CHAPTER 1

HISTORICAL BACKGROUND AND INTRODUCTORY CONCEPTS

1.1. Brownian motion

The first detailed account of Brownian motion was given by the eminent
botanist Robert Brown in 1827 [1, 2] while studying the plant life of the South
Seas. In this study, he dealt with the transfer of pollen into the ovulum of a
plant. He examined aqueous suspensions of pollen grains of several species
under a microscope and invariably found that the pollen grains were in “rapid
oscillatory motion.”

Initially, he thought that the movement was not only “vital” (in the sense of
not having a physical cause), but peculiar to the male sexual cells of plants. He
quickly disembarrassed himself of this explanation on observing that the motion
was exhibited by grains, which he called irritable particles, of both organic and
inorganic matter in suspension. We describe the evolution of Brown’s reasoning
in his own words [1]:

“_. having found, as I believed, a peculiar character in the motion of the
particles of pollen in water, it occurred to me to appeal to this peculiarity as a
test in certain cryptogamous plants, namely Mosses and the genus Equisetum, in
which the existence of sex organs had not been universally admitted ... But I at
the same time observed, that on bruising the ovula or seeds of Equisctim, which
at first happened accidentally, I so greatly increased the number of moving
particles, that the source of the added quantity could not be doubted. 1 found
also that on bruising first the floral leaves of Mosses, and then all other parts of
those plants, that I readily obtained similar particles not in equal quantity
indeed, but equally in motion. My supposed test of the male organ was therefore
necessarily abandoned. ... Reflecting on all the facts with which I had now
become acquainted, I was disposed to believe that the minute spherical particles
or Molecules of apparently uniform size, ... were in reality the supposed
constituent or elementary molecules of organic bodies, first so considered by
Buffon and Needham ...”

Brown investigated whether the motion was limited to organic bodics:

« .a minute portion of silicified wood, which exhibited the structure of
Coniferae, was bruised, and spherical particles, or molecules in all respects like
those so frequently mentioned, were readily obtained from it; in such quantity,
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however, that the whole substance of the petrification secemed to be formed of
them. But hence 1 inferred that these molecules were not limited to organic
bodies, nor even to their products,”™

Later, he writes:
“Rocks of all ages, including those in which organic remains have never been
found. yiclded the molecules in abundance. Their cxistence was ascertained in
cich of the constituent minerals of granite, a fragment of the Sphinx being onc
of the specimens examined.”

Brown finally describes the motion as “matter is composed of small particles
which he called active molecules that exhibit a rapid irregular motion having its
origin in the particles themselves and not in the surrounding fluid™ [1].
Following Brown’s work there were many years of speculation [1, 2. 3] about
the cause of the phenomenon, before Einstein made conclusive mathematical
predictions of a diffusive effect arising from the random thermal motions of
particles in suspension. Most of the hypotheses advanced in the nineteenth
century could be dismissed by considering an experiment described by Brown in
which a drop of water of microscopic size, immersed in oil and containing just
one particle, unceasingly exhibited the motion. According to Nelson [1], the first
investigator to express a notion close to the modern thcory of Brownian
movement (i.c., that the perpetual haphazard motion or Brownian Schwankung is
caused by bombardment of the Brownian particle by the particles of the
surrounding medium) was C. Weiner in 1863 [3]

We mention the very detailed experimental investigation made by Gouy,
which strongly supported the kinetic-theory explanation. Gouy's conclusions
may be summarized by the following seven points [1, 2, 3].

(1) The motion is very irregular, composed of translations and rotations, and
the trajectory appears to have no tangent,

(2) Two particles appear to move independently, even when they approach
one another to within a distance less than their diameter.

(3) The smaller the particles, the more active the motion.

(4) The composition and density of the particles have no effect on the
motion,

(5) The less viscous the fluid, the more active the motion.

(6) The higher the temperature, the more active the motion.

(7) The motion never ceases,

Point | is of profound interest in view of the later work of N. Wicner [1].
who proved in 1923 that the sample points of the Brownian-motion trajectory
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are almost everywhere continuous, but nowhere differentiable. Despite these
careful observations in favor of kinetic theory, however, several arguments
always seemed to militate against it. We give below two of the most prominent.

An early attempt to explain Brownian motion in terms of collisions was
made by von Nigeli. We consider the conservation of momentum during an
atomic collision with a macroscopic Brownian particle of mass M and velocity
5. If the surrounding molecules each have mass m and velocity v, the velocity
change Av of the molecule on a single impact is (m/M) v. Now if v is calculated
from the kinetic-theory equation

m{v*)/2=3kT /2

(where k=138 x 107 JK' is the Boltzmann constant and T is the absolute
temperature), and then the principle of conservation of momentum is applied, Av
for a typical Brownian particle (10 m in diameter) in water at 300 K is about
5 x 10 ms™". The observed Brownian movement for this system, however, is
greater than this by two orders of magnitude. Von Nigeli was aware of this
discrepancy; however, he could not explain it in terms of collisions because he
assumed that these would produce zero net effect. Thus, he effectively calculated
only the velocity change as a result of a single collision. His error lay in
regarding the random collisions as occurring in regularly alternating directions
that would keep bringing the target molecule back to its starting position. This
assumption is invalid, because if n random collisions occur (see the discussion
of the random-walk problem in Ref. [4]), the displacement (root-mean-square
value) will be proportional to 2. Now, if the time interval between successive
observations of the particle is 7, » will be proportional to 7. Thus the root-mean-
square value of the displacement is proportional to ' and nof zero as assumed
by von Nigeli.

Many investigators assumed (correctly) that the macroscopic Brownian
particle could be treated simply as an enormous “atom” of mass M. This would
also allow a test of the kinetic theory, because the law of equipartition of energy
implied that the kinetic energy of translation of a Brownian particle and of a
molecule should be equal. Thus, the velocity § of a Brownian particle should be
given by that of a molecule:

1, ., 3
—M{s*Y==kT. [.1.1)
S M) =2 (1.L1)

For the system described above, (s*) predicted by Eq. (1.1.1) is much greater
than the visually observed value. The explanation is that the equipartition
formula above holds only when the time between observations is of the order of
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Figure 1.1.1. Trajectory of a Brownian particle: three drawings obtained by tracing the
segments which join the consecutive positions of the particle at intervals of 30 s. After J.
Perrin, Brownian movement and molecular reality, London, Taylor & Francis, 1910.

the time between collisions. In practice, we cannot make observations to such a
fine degree.

To aid our argument let us consider (§*) more closely. Suppose we observe
at 30 s intervals the motion of a Brownian particle and plot its two-dimensional
“random walk.” Its trajectory looks like that shown in Fig. 1.1.1. Suppose the
same random walk had been observed at intervals zof 10 s, There would then be
three times as many points, and the overall impression would be that the particle
is moving J3 times as fast. During a time interval 7 the particle undergoes
millions of collisions, so as the time interval between observations is decreased
stll further, the apparent velocity continues to increase, and only when 7 is of
the order of the time between collisions will Eq. (1.1.1) hold true. We note that
the trajectory that we will observe is in no sense the actual path of the particle:
consider the following remarks of Fowler [5, 6]:

“We can never follow the details of the movement of the grain [(Brownian
particle)], which has a kink at cvery molecular collision—about 10%' times a

second in an ordinary liquid... What we observe as displacements are of the
nature of residual fluctuations about a mean value zero, and have little direct
connection with the actual detailed path of the grain. To our senses (pushed to
their farthest limit in the form of [the best cine camera] taking 10° pictures a
second) the details of the path are impossibly fine. The path may fairly be
compared in a crude way to the graph of a continuous function with no
[derivative].” (We shall say more of this later)

The above remarks of Fowler have been beautifully reinforced and added to
by Schrocder [7] — see his Fig. I, p. 142 — where Brownian motion is cited as
the supreme example of a random fractal phenomenon. Fractals are, in general
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(as defined by Mandelbrot [8]), exceedingly fine-grained structures that exhibit
self-similarity with respect to multiplicative changes in scale. In other words, a
self-similar object appears [7] unchanged after increasing or decreasing its size.
Self-similar objects typify many laws of nature which are independent, or nearly
so, of a scaling factor, examples of scale factors being [7] Planck’s constant or
the speed of light. Perhaps a useful working definition for physicists of a fractal
is that attributed to Mandelbrot by Feder [9]:

“A fractal is a shape made of parts similar to the whole in some way.”

For the purposes of this book, fractals may be considered [9] as sets of points
embedded in a space. (A detailed account of Brownian paths considered as
fractals is available in the book of Mazo [10].)

In the context of a record of Brownian motion as a random fractal object, the
statistically self-similar nature of the observations (realizations) of Brownian
motion (that is, the Brownian record looks “the same” [9]) constitutes scale
invariance or symmetry of the Brownian record. In Brownian motion, the range
of lengths over which statistical self-similarity prevails may run from
macroscopic sizes almost down to the mean free path of a molecule.

1.2. Einstein’s explanation of Brownian movement

It was left to Einstein in 1905 to explain Brownian movement, essentially by
combining (in the sense that the velocity, but not the displacement, distribution
is in equilibrium) the elementary stochastic process known as the random walk
with the Maxwell-Boltzmann distribution [3]. His ideas may be summarized
thus: If a particle in a fluid without friction receives a blow duc to a collision
with a molecule, then the velocity of the particle changes. However, if the fluid
is very viscous, the change in velocity is quickly dissipated and the net result of
an impact is a change in the displacement of the particle. Thus, Einstein assumed
that the cumulative effect of collisions is to produce random jumps in the
position of a Brownian particle; that is, the particle performs a kind of random
walk. Taking the jumps in the walk as small, he obtained a partial differential
equation for the probability density function of the displacement in one
dimension [3]. This equation is a diffusion equation similar to that for unsteady
heat conduction. It is the simplest case of a class of equations (probability
density diffusion equations) that have become known as the Fokker—Planck
equations. Einstein obtained its solution, from which he was able to show that
the mean-square displacement of a Brownian particle should increase lincarly
with time. By using the fact that at equilibrium the Maxwellian distribution of
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velocitics must hold, he was able to express the constants in the solution in
terms of the temperature and the viscosity of the fluid. Einstein’s formula for the
mean-square displacement was verified experimentally by Perrin in 1908
[1.2.6]. He obtained from Einstein’s formula a value of Avogadro’s number
that agreed to within 19% with the accepted value. This provided powerful
cvidence for the molecular structure of matter.

It is interesting to recall that Einstein formulated his theory without having
observed Brownian movement, but predicted that such a movement should occur
from the standpoint of the kinetic theory of matter. We quote from his paper [3]:

“...according to the molecular-kinetic theory of heat, bodies of microscopically-
visible size suspended in a liquid will perform movements of such magnitude
that they can be casily observed in a microscope, on account of the molecular
motions of heat. It is possible that the movements to be discussed here are
identical with the so-called “Brownian molecular motion™ however, the
information available to me regarding the latter is so lacking in precision, that I
can form no judgment in the matter... If the movement discussed herc can
actually be observed (together with the laws relating 1o it that one would expect
to find). then classical thermodynamics can no longer be looked upon as
applicable with precision to bodics even of dimensions distinguishable in a
microscope: an exact determination of actual atomic dimensions is then
possible. On the other hand, had the prediction of this movement proved to be
incorrect, a weighty argument would be provided against the molecular-kinetic
conception of heat.”

and later;

“...from the standpoint of the molecular kinetic theory of heat... a dissolved
molecule s differentiated from a suspended body solely by its dimensions, and
it is not apparent why a number of suspended particles should not produce the
same osmotic pressure as the same number of molecules. We must assume that
the suspended particles perform an irregular movement—even if a very slow
one —~in the liquid, on account of the molecular movement of the liquid.”

We remark, by way of historical background, that Laplace [11] in 1812
obtained a partial differential equation similar to the Fokker—Planck equation, in

and that a similar cquation was obtained by in 1894 by Rayleigh [12], who
wished to find the probability distribution function of a sum of n sinusoidal
motions all having the same period and amplitude with a random distribution of
phases. For n > w, Rayleigh [12] obtained a diffusion equation similar to that of
Einstein. Both of the previous examples are forms of the random walk problem
which is discussed at length in [4. 13, 14, 15, 16] in the context of Brownian
movement. The first clear statement of the random walk problem seems to have
been made by Karl Pearson in 1905 [4, 5]
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“A man starts from a point O and walks / yards in a straight line; he then turns
through any angle whatever and walks another / yards in a second straight line.
He repeats this process n times. I require the probability that after these n
stretches he is at a distance between » and r + dr from his starting point, 0.

The phrase “turns through any angle whatever and walks another / yards in a
second straight line” constitutes a Stosszahlansatz or mechanism of the random
walk process.

Bachelier in 1900 made a mathematical model of the French Stock Exchange
and obtained a diffusion equation similar to that of Einstein [2, 5, 17, 18, 19,
20]. Later [5] (1911, 1912), he studied the related problem of the Gambler’s
Ruin, which is in effect a type of random walk problem. He showed that, when
the sequence of bets placed by the gambler is large, it is simpler to formulate a
continuous model of the process. He was again led to a type of Fokker—Planck
equation. More examples are given by Gardiner [14], and further applications to
financial problems are given in [18, 19, 20]. A rudimentary, but nonetheless
useful intuitive derivation of the specialized form of the Fokker—Planck
equation, known as the Smoluchowski equation, may be given as follows.

Suppose that we have /' Brownian grains per unit volume suspended in a
liquid per unit volume between r and r +dr at time . Suppose further that these
particles are subject to an external force which is the negative gradient of a
potential V(r), so that

K = —gradV (r)=-V V(r). (1.2.D
MNow consider a volume o in the liquid bounded by a closed surface S, and

calculate the (drift) current of particles crossing S due to the action of K. We
have by Gauss’s divergence theorem

%ju fr,0ydv=—] 3, -ndS=~ divl,d, (1.2.2)

where J, is the current density of particles and n 1s the unit normal to S. Thus,
we have the continuity equation

f+divd, =0, (1.2.3)
which is the law of conservation of representative points. Now, the drift current
is J, = fv. Here v is the drift velocity of a particle moving in the liquid. On

supposing that K —¢v=0, where —{'v is the viscous drag and ¢ is the drag
coefficient of a particle, the drift current is

J, = —gvrv. (1.2.4)
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The analysis so far takes no account of the thermal agitation of the particles
(the Brownian movement). In order to take account of this let us now add to J,; a
diffusive term

Jyr =—DV_f, (1.2.5)

where D is the diffusion coefficient, in this instance, &7/ ¢. The addition of this
diffusive term makes the distribution f(r, 7) more nearly uniform. The continuity
equation, Eq. (1.2.3), then becomes

Y _ pai A
~ = Ddiv [vr f4e V,VJ, (1.2.6)

which is the specialized form of the Fokker—Planck equation known as the
Smoluchowski equation, which describes approximately the evolution of f in
configuration space. (For a detailed account of Smoluchowski’s method of
derivation of this equation, which was based on a specific detailed kinetic
model, namely collisions of hard spheres, see Mazo [10]). Equation (1.2.6) was
first [5] given by Einstein in 1905 for the special case of ¥'=0. In general, direct
Justification of the inclusion of thermal agitation by adding the diffusive term of
Eq. (1.2.5) is difficult; nevertheless, it yields the same results (with very much
less labor) as the detailed methods of derivation of the Fokker-Planck equation
presented below. The stationary solution of the Fokker—Planck equation is the
solution with f =0. The diffusion coefficient D is found by requiring that, in
general, the stationary solution should be the Boltzmann distribution (with
certain restrictions, such as the case of a particle moving in a tilted cosine

Smoluchowski equation assumes that the velocity distribution has reached
statistical equilibrium, i.e., that it has the Maxwellian distribution.

Another form of the Fokker—Planck equation which we shall be referring to
later is the Klein—Kramers equation [5] (originally derived by Klein in 1921 [4])
which describes the evolution of the density f(r, v, #) of representative points in
phase space (r, v), viz.,

z+v-fo——Lva-VrV =£[dlivv (vf')+£‘73f}. (1.2.7)
ot m m m
The Fokker~Planck equation is a partial differential equation of parabolic type.
In the mathematical literature, it is called a forward Kolmogorov equation. It

may be described in general terms as a diffusion equation with an additional
first-order derivative V_ with respect to position (i.e., a convective or
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hydrodynamical derivative). The rigorous derivation of the Fokker-Planck
equation is given in Section 1.9.

The detailed derivation of FEinstein’s formula for the mean-square
displacement of a Brownian particle and the associated Fokker—Planck equation
will be given in Section 1.4 below. We shall first, however, give the calculation
of the mean-square displacement using the method based on the equation of
motion of the random variable proposed by Langevin [22] in 1908; it is the
extension of this method to treat nonlinear dynamical systems without recourse
to the Fokker—Planck equation which is the principal concern of this book.

More specifically, the method of calculation of the average properties of a
dynamical system (e.g., mean-square displacement, velocity correlation
function, etc.) which has hitherto been used is to construct the Fokker—Planck
equation in phase space from the Langevin equation for random variables
representing, say, the position and velocity of a Brownian particle. The
distribution function is then expanded where possible into a product of a set of
orthogonal functions in the position, and an orthogonal set in the velocities,
corresponding directly to the averages of the dynamical quantities which one
wishes to calculate. For example, for rotational Brownian motion about a fixed
axis, one will obtain a Fourier-Hermite series (sce Chapter 10). The above
procedure leads to a set of differential-recurrence relations for the coefficients of
the generalized Fourier series, which govern the time behavior of the averages of
the desired dynamical quantities (observables). The same is true for the
Smoluchowski equation, which supposes that equilibrium of the velocities has
been attained (here the configuration space distribution is expanded in a set of
orthogonal functions in the configuration variables), and which is approximately
valid if inertial effects are small. Our main objective is to show (by suitable
transformation of, and averaging of, the Langevin equation interpreted as an
integral equation according to the Stratonovich rule; see Chapter 2, Section 2.3)

the Langevin equation. The Fokker—Planck equation is then bypassed entirely.
The advantages of this formulation of the theory are that:

(a) In general, Langevin’s method is far easier to comprehend than that
based on the Fokker—Planck equation, as it directly utilizes the concept
of the time evolution of the random variable describing the process,
rather than the time evolution of the underlying probability distribution.
Indeed, to quote Wang and Uhlenbeck [13], the Langevin equation is
“the real basis of the theory of the Brownian motion,” since the drift and
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diffusion cocfficients in the Fokker—Planck equation must be calculated
from it a priori.

(b) The need to construct the Fokker-Planck equation from the Langevin
cquation is dispensed with.

(c) Itis often very difficult to separate the variables in the Fokker—Planck
cquation by expanding in the orthogonal sets of functions corresponding
to the observables, Langevin’s method avoids such a procedure, all that
is required is the interpretation of his equation as an integral equation
(see Section 1.10 and Chapter 2),

For ease of comparison with the work of the early investigators, we shall
adhere to their notation as far as possible in Sections 1.3-1.6; these sections
constitute a detailed account of the work of Einstein and Langevin including a
brief summary of thosec parts of statistical mechanics which are essential to our
discussion. Thus, in these sections, no distinction is made between a random
variable &(f) and one of its realizations x (¢), as is often done in theoretical
physics. We will also, in these sections, use the notation f(x,?) for the
probability density function (PDF) in configuration space adopted by Einstein,
rather than W (x, t) (which is used in the rest of the book) or p(q, p, t) (when
treating the Liouville equation in Section 1.5). Section 1.6 constitutes an

in accordance with standard textbooks in statistics, the letter £(7) 1s used to
denote a time-dependent random variable, and lower case roman letters, e.g.,
x (1), arc realizations. Elsewhere, unless evident from the context, we shall
always use £ (1) to denote a random (stochastic) variable.

1.3. The Langevin equation

The theory of Brownian movement as formulated by FEinstein [3] and
Smoluchowski [4], although in agreement with experiment, seemed far removed
from the Newtonian dynamics of particles [1], as it appeared to rely on the
concept of the PDF of Brownian particles and the Fokker-Planck equation for
the time evolution of that PDF. It was Langevin who, in 1908, by introducing
the concept of the cquation of motion of a random variable (in this case the
position of a Brownian particle), initiated, to quote Nelson [1], “a new train of
thought culminating in a truly dynamical theory of Brownian motion” (inter alia
conceiving the idea of a stochastic differential equation). Notwithstanding this, it
must be emphasized that the reduction of Brownian motion to Newtonian
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particle dynamics is still incomplete, as the problem (or one formulation of it
[1]) is.to deduce each of the following theories from the one below it:

Einstein—~Smoluchowski
e (Ormstein—Uhlenbeck
Maxwell-Boltzmann

e Hamilton—Jacobi

The reader is referred to Section 4 of [4], Chapter VI of [23], [5], and [15] for
further discussions of this problem. The Ornstein—Uhlenbeck theory which, with
its subsequent additions, is itself a rigorous formulation of Langevin’s ideas, is
discussed in detail later.

Langevin [5, 22] began by simply writing down the equation of motion of the
Brownian particle according to Newton’s laws, assuming that it experiences two
forces arising from the heat bath, namely: (i) A systematic force (viscous drag)
—£x(¢), which represents a dynamical friction experienced by the particle
encouraging collapse to a “dead” state [24] (x 1is the velocity and ¢ is the
coefficient of friction). (ii) A rapidly fluctuating force F(r), which is due to the
impacts of the molecules of the liquid on the particle, now called white noise.
This is the residual force exerted by the surroundings or heat bath when the
frictional force has been subtracted and which keeps the motion “alive™ [24].

Thus, Langevin’s stochastic differential equation of motion, according to
Newton’s second law, is, for a particle of mass m,

mx(t) = = x()+ F(1). (1.3.1)

The friction term £x 1s assumed to be governed by Stokes’ law, which states
that the frictional force decelerating a spherical particle of radius a is
{x =6mnax, (1.3.2)

where 77 is the viscosity of the surrounding fluid. The following assumptions are
made about the fluctuating part F(¥) [5]: (1) F(¢) is independent of x, (i1} /(1)
varies extremely rapidly compared to the variation of x (f), and (iii) F(1) is so
irregular that the average
F(=0. (1.3.3)
The overbar in Eq. (1.3.3) means the statistical average over an c¢cnsemble of
particles, each particle in the ensemble starting with the same (sharp) initial
conditions. Assumption (ii) above implies that each collision is practically
instantaneous. This rapid variation can be expressed by [5]
F(OF (") =2LkT St —1), (1.3.4)
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where &(¢) is the Dirac delta function, ¢ and ¢ are distinct times, and 2¢kT 18
called the spectral density; this is flat, i.e., independent of frequency e, so that
we have white noise (Section 1.7 and Chapter 3). Formally speaking,
T2
F(OF(') = F(OF(+7) = lim Ti [ F@yP(+oyar,

=T'i2

which is the time average of a two-time product over an arbitrary range time 7"
which is allowed to become infinite [14]. In reality, the autocorrelation function
(ACF), Eq. (1.3.4), starting from 2¢kT, does not drop instantaneously to zero,
so that the spectral density ®r(w) does not have the constant value 2kT at
very high frequencies (colored noise). Consequently, the situation where Dr(w)
is constant for all @ (white noise), corresponding in the time domain to the delta
function ACF of Eq. (1.3.4), is the limiting case of a purely random process (i.c.,
a process without a memory) which will never [25] occur in practice. It will
become apparent later (see Section 1.6.3) that F(7) is a centered Gaussian
random variable and that F(¢) obeys Isserlis’s theorem [13, 26]

—_—

FF,F, =F{t)F(t)F(i, )= ZHM F(3, )F(t,), (1.3.5)

where the sum is over all distinct products of expectation value pairs, each of
which is formed by selecting » pairs of subscripts from 27 subscripts. For
example, when n =2, we have

FFFF, =FRF, FF,+FF, F;F, +FF, F,F, (1.3.6)

In general, there will be (2n)!/(2"n!) such distinct pairs. We also have, for an
odd number of observations,

F(, () F(t,,,)=0.

By transforming Eq. (1.3.1) into a stochastic differential equation
corresponding to the desired observable, Langevin [5] derived the formula for
the mean-square displacement of the Brownian particle as follows. On
multiplying Eq. (1.3.1) by x(¢), since

1d
)‘cx:fixz and jélef]— ixz —x%,
2 dt 2 dt
we have
md
2.dt

Equation (1.3.7) refers to only one selected Brownian particle. The complete
solution of the motion of a macroscopic system would consist of solving all the

d 2) 2o Sd o , |
[Zx mj mx’ () = S )+ F()x(?). (1.3.7)
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microscopic equations of the system. Because we cannot do this, we instead use
the averaged equation of motion, i.e.,

e d(dx ]—mF=—£i?+E. (1.3.8)
2 dt\ dt 2

In Eq. (1.3.8), it is assumed that Fx vanishes because of the irregular variation
of the force F, i.e., the random force F' and the displacement x are completely
uncorrelated. From statistical mechanics, once the velocity process reaches
equilibrium, the Maxwellian distribution sets in [5], so that the mean kinetic
energy of the particle becomes

mi’ [2=kT /2. (1.3.9)
Thus, Eq. (1.3.8) becomes
md “" = kT (1.3.10)
2adl T2 @

The solution of Eq. (1.3.10) is
AX _ cpeim XL (1.3.11)
¢

where C is a constant of integration. For very large times ¢ compared to m /¢,
which is of the order of 107 s, we have

d 2 _UT

ar’ -
Neglecting the exponential term in Eq. (1.3.11) implies ignoring the effect of the
inertia of the particle. Integrating Eq. (1.3.12) from =0 and writing (Ax)* for
the mean-square displacement instead of x*, we have Einstein’s formula [3]
ZkT .

t, (1.3.13)
3

which has a meaning described remarkably well by Sears [27]:

(1.3.12)

(Ax)* =

“We observe a Brownian grain at time 0 and at time ¢. During the time interval
(0, ) it has undergone a displacement As, whose projection on the x-axis is A x.
The same grain is observed at later times 21, 37, ..., and A x is determined for
each interval. These values are squared and their mean value is calculated;
which is (Ax)*. We emphasize that these displacements which we observe are
not in any sense the detailed path of the grain nor is Ax/ t its vellocity For

amd what we see are simply its initial and final positions, Whlch we connect by a
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straight line, while the true path is a confused zigzag of linear segments. What
we observe is already a greatly simplified “path” [an example of which is given
in Fig 1.1.1]. If one imagines each of the linear elements in this figure to be
composed of millions of straight lines, one will begin to approximate the actual
path. It is impossible to analyze this complicated motion in all of its details and
we must therefore be satisfied to observe, in a certain time interval ¢, the
corresponding magnitude of (Ax)* which is only loosely related to the true
path”.

The noise force F(¢) in the Langevin equation may be related to the drag
coefficient ¢ as follows (i.e., the fluctuation—dissipation theorem)

TF(t)F(t +7)dr = % jf F(OF(t+1)dr = ;krf S(rydr =CkT, (1.3.14)
0 —0 —o

hence
¢ =$IF(t)F(t+r)dr, (1.3.15)

thereby relating the systematic frictional force driving the system towards a
“dead” state and the random force keeping it “alive” [24].

In summary, the essence of Langevin’s method is to rewrite his Newtonian-
like equation of motion of the random variable describing the dynamics of a
representative point in phase space (x,%) in variables corresponding to the
desired observable(s); cf. Eq. (1.3.7). Then one averages the new equation over
its realizations, yielding the deterministic evolution equation for the
observable(s). Once a potential is involved [30], the Langevin equation
generates coupled stochastic differential-recurrence equations which, when
averaged using the properties of Gaussian white noise, become a deterministic
hierarchy of coupled equations for the observables.

1.3.1. Calculation of Avogadro’s number

We have seen that, according to Stokes’ law, the friction coefficient of a
spherical particle moving in a viscous liquid is ¢ = 6zna, where a is the radius
of the particle and 7 is the viscosity of the liquid. If we combine this formula
with the Einstein equation, Eq. (1.3.14), we obtain

(Ax)? =21RT / (N&), (1.3.1.1)

where N =R/k is the Avogadro number and R is the gas constant. If the gas
constant R is known (8.314 JX™' mol™), all the other variables in Eq. (1.3.1.1)
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except N may be determined in a suitable experiment. Thus, one may use
Einstein’s formula to estimate N. In 1908, Perrin computed the Avogadro
number N from observations of Brownian movement, obtaining
N=6.85x 1023 mol™" [2, 5]. He also confirmed the relation between t, n,and T
predicted by the Einstein equation, for which he was awarded the Nobel prize in
1926. A detailed account of his research is given by Fowler [6], who has
succinctly summarized the work of the early investigators (see also [2, 4, 10, 18]
and Fig. 1.3.1.1):

*(1) We can see the manifestations of the molecular motions going on before

our €yes.

(2) We can check the assumptions of statistical mechanics in a rather
detailed way by proving that the characteristics of the Brownian movement
agree with the demands of the theory.

(3) We obtain a direct, though not very accurate method of measuring
molecular magnitudes.”

Figure 1.3.1.1. Brownian fluctuation of a very light mirror suspended upon a fine quartz
fiber of torsion constant 4. (a) Pressure 4 x 10 mm Hg. (b) Atmospheric pressure. (c)
Pressure 107" mm Hg. The motion of the system is characterized by the angle ¢ through
which the mirror has rotated from its position of equilibrium. One may expect that the
system will perform Brownian motion of such magnitude that Ap®/2=kT/2.
Measurements of 4 and ¢* [28] permit one to obtain a value of the Boltzmann constant &
as well as the Avogadro number N. At low pressures (c), the motion approaches the
sinusoidal natural mode of oscillation of the system and tends to lose its random
character. All of the curves, in spite of the difference in their forms, yield identical values
of ¢* . (Taken from R. Barnes and S. Silverman [29]; see detailed discussion in [1]).
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1.4. Einstein’s method

Einstein derived his expression for the mean-square displacement of a Brownian
particle by means of a diffusion (Fokker-Planck) equation, which he constructed
using the following assumptions [3]: (i) Each individual particle executes a
motion which is independent of the motion of all other particles in the system.
(i) The motion of a particle at one particular instant is independent of the
motion of that particle at any other instant provided the time interval 1 is large
enough. (This is essentially another way of stating the assumption that Fx=0in
the Langevin equation.)

Einstein’s method may be described as follows: we introduce a time interval
7, which is Jarge enough that, according to assumption (ii) above, the motion of
a particle at time ¢ is independent of its motion at time ¢+ z, but small compared
to the time intervals between observations. Suppose that there are [fparticles per
unit volume in a liquid between x and x + dx at time ¢ (we shall consider only the
one-dimensional case since there is no loss of generality in doing so). After a
time 7 has elapsed, we consider a volume element of the same size at point x'.
Each particle has a different (positive or negative) value. We suppose that [5]
the probability of a particle entering from a neighboring element to x' is a
function of A =x'—x and 7 (a brief description of the relevant probability theory
is given in Section 1.6). We denote this probability by ¢(A,z). Since the particle
must come from some volume element, the density at time ris [5]

flx,t+1)= f F(x+ AP, T)dA. (1.4.1)

Now positive and negative displacements are equiprobable, so we have an
unbiased random walk. Thus the function @(A,7) satisfies

#(A,7)=g(-A,7). (1.4.2)
Now suppose that 7 is very small, so we can expand the left-hand side of Eq
(1.4.1) in powers of 7, i.e.,
f(x,t+r)=f(x,t)+z'%+---. (1.4.3)
Furthermore, we develop f(x+A,f) in the right-hand side of Eq. (1.4.1) in
powers of the small displacement A, thereby obtaining

2

fx+A0) = f(x, z)m —/( t)+——=-a—f(xt)+ (1.4.4)

The integral equation (1.4.1) therefore becomes
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5)”

f+r-—=—fj ¢dA+ _[AWA j—¢d4\+ (1.4.5)

Since ¢ is a PDF and ¢(A,7) = ¢(—A,7), we have

]-ogzi(A,r)dA:l jM(A 7)dA=A =0, jAgﬁ(A DdA=AY,  (1.4.6)

where the overbar denotes the mean over the displacements for each particle.

Now all higher order terms such as A* in Eq. (1.4.5) are at least of order °.
Hence, Eq. (1.4.5) simplifies to

of Ao i
;; ) axf (1.4.7)
If we set D=A”/ (27), then Eq. (1.4.7) can be written as
ol
g f (1.4.8)

ot ax

Equation (1.4.8) is a diffusion equation in one dimension derived for small A
from the integral equation (1.4.1) with D the translational diffusion coefficient.
The solution of Eq. (1.4.8) may be found by assuming that all the Brownian
particles are initially placed near the point x=0 at time #=0 (sharp initial
conditions) [5]. This corresponds to finding the point-source solution of the
diffusion equation that is Green’s function (the transition probability or
propagator). The conditions to be imposed on the solution are

f(x,0)=06(x), (1.4.9)
where 6(x) is the Dirac delta function. Since /'is a PDF, we also have

[ f(x,tdx=1 (1.4.10)
(see Section 1.6). The solution of Eq. (1.4.8) subject to these conditions is given
by [5]

f(x,t)=ﬁe"‘””“), — 0 < X < o0 (1.4.11)
7T

Equation (1.4.11) determines the root-mean-square displacement of the particle
in the x direction. We have

Jx* =201, (1.4.12)
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We emphasize (with Wang and Uhlenbeck [13] and Kac [15]; see also [5D
that one may only obtain the diffusion equation, Eq. (1.4.8), when in small times
7, the space coordinate A can only change by a small amount. In the general
case, the process will always be governed by an integro-differential equation
which is of the same type as the Boltzmann equation of the kinetic theory of
gases [13, 21, 31], of which Eq. (1.4.1) is an example with ¢ (A,7) = ¢ (-A, ) as
the Stosszahlansatz. In addition, if r is the total displacement of the particle in
space, i.e., #* =x’+ 3’ +z° so that »* =3x> [3].

Einstein determined the diffusion coefficient D in terms of molecular
quantities by imagining that the Brownian particles are placed in a field of force
K(x) so that the Boltzmann distribution for the configuration of the particles
must eventually set in, meaning that

f=fe 4, (1.4.13)

If the force is constant, as would be true when gravity acts on the Brownian
particles, the potential energy ¥ is

V =-Kx, (1.4.14)

where we suppose that the particles are so few that their mutual interactions may
be neglected (we have an “atmosphere” of Brownian particles). We may
imagine the Boltzmann distribution to be set up as a result of the motion of the
Brownian particles due to the force together with a diffusion current that seeks
to satisfy Eq. (1.4.8). Now, the velocity of a spherical particle that is in
equilibrium under the action of the applied force and viscosity is given by
Stokes’ law, Eq. (1.3.2), viz.,
v=K/(6zna).

The number of particles crossing unit area in unit time J ¢ =v/ (current density
of particles) is then J, = fK /(67na); however, in order to preserve equilibrium
under the action of the force, a diffusion current of equal strength flows in the
opposite direction so that, by inspection of Eqgs. (1.2.4) and (1.2.5),

p¥ _ K
6x 6rna’

(1.4.15)

This is the mathematical statement of the fact that, at equilibrium, the rate of
diffusion under the concentration gradient must just balance the directed effect
of the field of force. However, from Egs. (1.4.13) and (1.4.14), we also have
(i.e., the overall current must vanish)

19 _K

f o AT (1.4.16)
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Thus, on comparing Eqs. (1.4.15) and (1.4.16), we obtain Einstein’s formula for
the translational diffusion coefficient D = kT / (6xna).

The arguments used to establish the formula for the mean-square
displacement may be extended to rotational Brownian motion about a diameter
of a particle in suspension. If & is an angular coordinate and if 6 is the mean-
square angular displacement in time 7 due to molecular agitation, then according
to Eq. (1.4.8), the PDF of the orientations satisfies

o o'f ‘

Y =D, Pyl (1.4.17)
where D, =8°/(2r) is the rotational diffusion coefficient. Suppose that an
external torque of potential ¥ (&) acts on the body. In equilibrium we would
then have f = f,e™"**'*" and thus

lg__Lov (14.18)
fo8 kT 08
For a particular particle under a torque —0V /06, we have a steady angular
velocity ¢ =—8V /38, where the drag coefficient ¢ for a sphere rotating about
a fixed axis in a viscous liquid is ¢ =8za’n [32]. The number of particles
diffusing across a given value & of the coordinate in unit time is

for of
¢ =TT =Dy —,

¢ 08 06
and hence D, = kT /¢. Thus, we have Einstein’s formula for the mean-square
angular displacement 6° =kTz/¢=kTt/(4na’ny). However, this formula
cannot be applied for any arbitrarily small time. We give the original argument
of Einstein that illustrates this [3]. The mean rate of change of & as a result of
thermal agitation is

0% It = J2ckT 1 (D). (1.4.19)

This becomes infinitely great for indefinitely small intervals of time f. This is
impossible, since each suspended particle would move with an infinitely great
instantaneous angular velocity. The reason for this difficulty is that we have
implicitly assumed in our development that events occurring during the interval
t are completely independent of events in the time immediately preceding it. This
is not true if # is chosen small enough because inertial effects will come into play
so inducing memory of previous events.

Einstein established a range of validity for his formula using the following
argument. Suppose that the instantaneous rate of change of @ at an initial time
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1, =0is (1 = 1y) = @,. Suppose further that the angular velocity @ (f) at some
later time # is not affected by the irregular thermal processes that occur in the
time interval (f, ¢ ), but that the change in @ is determined solely by the viscous
drag ¢w. Then we have

I =—ca, (1.4.20)

The moment of inertia I is defined by the condition that /®w® /2 must be the
rotational kinetic energy corresponding to the angular velocity @(z). This is
evidently the moment of inertia of the sphere about a diameter. By integration of
Eq. (1.4.20), we obtain

0(t) = o () = w,e"".

This is negligible only when the time interval between observations is large
compared with the friction time 7/, ie, t>>I/¢. If this condition is not
satisfied, inertial effects must be taken into account. Einstein calculated that, for
bodies of 1 um diameter and unit density in water at room temperature (300 K)
the lower limit of applicability of the formula for 6” is of the order of 107 s;
this lower limit for the interval between observations increases in proportion to
the square of the radius of the body. The same considerations hold for
translational as for rotational motion of the grain. For practical purposes, inertial
effects will only start to become prominent when Brownian movement is used to
model high-frequency relaxation processes.

Einstein also showed how his theory may be applied to conduction processes
in a conductor. The charge carriers are regarded as charged Brownian particles;
thus, if £ is replaced by the electrical resistance R of the conductor and the
charge g replaces the displacement x of the Brownian particle, then Einstein’s
formula gives, for the mean-square charge that has flowed across a section of the
conductor at time ¢,

q* = (2kT I Ry, (14.21)

De Haas-Lorentz, in her book Die Brownsche-Bewegung, published in 1913 [4]
(which contains a very thorough account of.the history of the phenomenon to
that date), lists six electrical systems in which fluctuations are treated by means
of Brownian movement. In the above example, the ACF of the voltage e(f)
across the conductor due to thermal fluctuations is

e(t, Je(t,) = 2RKTS(t, —1,). (1.4.22)

Equation (1.4.22) is related to the work of Johnson [33] and Nyquist [34] (see
also Refs. [29] and [35]). In particular, the result for the spectral density, namely
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O, (w) = 2RKT, (1.4.23)

is known as Nyquist’s theorem. ®,(w) has the following meaning. Suppose
that, by using a filter, we measure é(w)Aw, which is the voltage across the
conductor in the angular frequency range (w,w+Aw®), where é&(w) is the
Fourier transform of e (¢ ). Then

@, (0)Aw/ R = 2%TAw (1.4.24)

is the mean power dissipated in the conductor in the frequency band Aw [25].

To assist the reader, the following Sections 1.5 and 1.6 will illustrate the
basic concepts of statistical mechanics and probability theory, which will be
needed throughout the rest of the book. The reader familiar with these concepts
may skip these sections if so desired.

1.5. Essential concepts in statistical mechanics

The development of statistical mechanics and the introduction of stochastic
processes into physics began in the nineteenth century [11, 31], when physicists
were attempting to show that heat in a medium is due to the random motion of
the constituent molecules. Excellent historical summaries are given by Jeans
[36], in the first and second editions of Chapman and Cowling [37], and by Born
[38]. We briefly summarize the work of Maxwell who, in 1859 [11,31, 36],
considered gases as if they were made up of small rigid spheres distributed
randomly but with uniform average density in a vessel [5]. In his model, the
molecules are assumed to have random velocities and to collide in a perfectly
random fashion with each other and with the walls of the vessel. The process is
also assumed to have been going on for a long time, so that equilibrium
conditions will have been attained. The position of the molecule is represented
by Cartesian coordinates x, y, z and its velocity by coordinates u, v, w, so that
x=u, y=v, z=w. Maxwell wanted to know the steady state probability
f(u, v, w) du dv dw that the velocity components lie in small ranges between u
and u +du, v and v+ dv, and w and w + dw. His original argument, although now
not regarded as completely satisfactory, is of interest both for its simplicity and
for its historical importance.
The derivation we give here is essentially that of Maxwell [5, 31, 36], with a
few slight changes in nomenclature.

“Let N, be the whole number of particles. Let u, v, and w be the
components of the velocity of each particle in three rectangular directions,
and let the number of particles for which u lies between u and u +du be
Nof (u) du, where f(u) is a function of u to be determined. The number of



22 The Langevin Equation

particles for which v lies between v and v+ dv will be N, S (v) dv, and the
number for which w lies between w and w + dw will be N, f (w) dw, where f
always stands for the same function. Now the existence of the velocity u
does not in any way affect that of the velocities v or w, since these are all at
right angles to each other and independent, so that the number of particles
whose velocity lies between u and « + du, and also between v and v+ dv and
also between w and w+ dw is

Ny () f (v) f (W)dudvdw.

If we suppose the N, particles to start from the origin at the same instant,
then this will be the number in the element of volume du dv dw after unit of
time, and the number referred to unit of volume will be N, Fw) f) f(w).
But the directions of the velocities are perfectly arbitrary, and therefore this
number must depend on the distance from the origin alone, that is

J@) S (w)=gu® +v* +w?).

Solving this functional equation, we find
f(u) = CeAMZ s ¢(N2 +v? + WZ) = Cse“f("z“’z**wz). »

This proof, although attractive because of its simplicity, is deemed
unsatisfactory because it assumes a priori the three velocity components to be
independent. The distribution may, however, be justified from rigorous
considerations. The constant C* is chosen so as to satisfy the condition:

% = ]? F jf eA("2+vz+W2)du dv dw.

—00 —o0

The constant 4 is —m/ (2kT), where m is the mass of a gas molecule.

In 1868, Boltzmann [31,36,37,39] gencralized Maxwell’s results by
supposing that the molecules are also subjected to a conservative field of force
K(x,y,z)=—gradV(x, y,z), where V(x,y,z) is the potential energy, so that the
total energy E of a molecule is E(x, y,z,u,v,w) =V (x, y,z) + m(u® +v* + w?)/2.
He then found that

S (2 2:2,u,v,w) = CrgFmrmurmVD) (1.5.1)
where C’ is a constant. Such a gas is said to have the Maxwell-Boltzmann

probability distribution. Hence the mean kinetic energy for each degree of
freedom of the gas molecules is the same

m® /2= m(u®) 1 2= m(v?)/ 2 = m{w?} /2 = kT /2.

This property, which applies also when there are several different kinds of
molecule in the gas, is known as the equipartition of energy. If we interpret the
mean kinetic energy as temperature, the equipartition theorem implies that gases
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in contact reach a common temperature, which is in agreement with experiment.
In Sections 1.5.1-1.5.4, we shall follow closely the discussion of Tolman [23].

1.5.1. Ensemble of systems

In classical mechanics, we consider the behavior of any given mechanical
system of interest as it changes in time from one precisely defined state to
another. In statistical mechanics, we have some knowledge of the system but not
enough for a complete specification of the precise state. For this purpose, we
shall consider the average behavior of a collection of systems of the same
structure as the one of actual interest, but distributed over a range of different
possible states. We speak of such a collection as an ensemble of systems. Here
we picture an ensemble as consisting [40] of the system in question and a very
large number of copies of it with which it is in thermal equilibrium. By ensemble
average, we understand an average over the ensemble at a given instant in time;
we denote such averages by angular braces ¢ ).

1.5.2. Phase space

In order to investigate the behavior of ensembles, it i1s convenient to have a
quasi-geometric language [23, 41] which can be used to specify the state of each
system in the ensemble and to describe the condition of the ensemble as a whole.
Thus, corresponding to any system of N degrees of freedom, we construct a
conceptual Euclidian space €2 of 2N dimensions with 2N rectangular axes, one
for each of the coordinates q=(q, ..., g») and one for each of the momenta
p = (p1, ..., Pn), Where these values would determine the instantaneous state or
phase (g, p) of the system. We speak [42] of such a conceptual space as a phase
space for the particular system (Fig. 1.5.2.1). For example, the phase (state or
representation) space of the system treated in Section 1.5 is (x, y, z, u, v, w).

1.5.3. Representative point

The instantancous state of any system in an ensemble can be regarded as being
specified by the position of a representative point in the phase space, and the
condition of the ensemble as a whole can be described by a “cloud” of density
olq(?),p(),t] of such representative points, one for each system in the
ensemble. The behavior of the ensemble over time can then be associated with
the “streaming” motion of the representative points as they describe trajectories
in the phase space, in accordance with the laws of mechanics. The representative
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Figure 1.5.2.1. Phase plane trajectories {x(¢), p(1) = mx(f)} of a damped harmeonic
oscillator with the equation of motion ¥(r)+ yx(z) + & x(1) = 0.

points for the different systems are often spoken of as Phase points. In Section
1.5, the coordinates of a representative point (state variables) are (x, y, z, u, v, w).
Excellent accounts of phase space and ensembles are given in Refs. [23], [41],
and [42].

1.5.4. Ergodic hypathésis

Maxwell and Boltzmann [31] hoped to justify the methods of statistical
mechanics by showing that the time average [25] of any quantity pertaining to
any single system of interest would actually agree with the ensemble average for
that quantity calculated from statistical mechanics. The postulate leading to this
conclusion was called by Boltzmann the ergodic (Greek, gpyov — work — and
odog — path) hypothesis, and by Maxwell the assumption of continuity in phase.
It states that the phase point for any isolated system should pass in succession
through every point compatible with the energy of the system before finally
returning to its original position in phase space. This is not strictly true in the
form postulated by the founders of statistical mechanics (see [23], pages 63-70);
thus in calculating average values one has, in general, to distinguish between an
ensemble average and a time average [25)]. However, for a Stationary process in
which all time dependent averages are functions only of time differences, i.e.,
invariant under time transformations, these two methods of averaging will
always give the same result. A graphic example using random function
generators is given in Ref. [25]. For example, we have defined the
autocorrelation function as the time average of a two-time product over an
arbitrary range time T, viz., [14]
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C.(0)y=x()x(t+7) = 71[1_1}11 -]1;; j x(H)x(t +7)dt, (1.5.4.1)

-T'/2
where in all cases 7 for negative values is to be interpreted as |z|. Thus
ergodicity means that, for a stationary process, where

x(O)x(t +7) = x(t)x(t —7), (1.5.4.2)

we méy also consider ensemble averages in which we simultaneously repeat the
same measurement for a huge number of copies of the system [14] and calculate
averages yielding a result identical to Eq. (1.5.4.1), 1.e.,

(x()x(z + 7)) = x(Dx(t + 7). (1.5.4.3)

1.5.5. Calculation of averages

It is convenient to summarize how the averages of dynamical quantities may be
calculated. Following Gibbs [5, 23, 41], we will describe the state of a given
system in terms of coordinates q=(g,,4,,...,4,) and conjugate momenta
p=(p,,Pys---» Py) (rather than velocities), the number of each being equal to
the number of degrees of freedom of the system. We also suppose that the
system is in thermodynamic equilibrium at temperature 7. Then, in the notation
of Gibbs [5], the Maxwell-Boltzmann law (i.e., the probability of finding the
state of the system in the range dQQ =dg,dp, ---dq, dp, ) 1s
_E(pr-pustrn)

pdQ = Ce i dg,dp,---dq,dp,,
where E is the Hamiltonian or total energy of the system. As before, the
coefficient C is chosen to satisfy the normalization condition

jﬂpdgsl,

where the integration extends over all possible values of the variables. In
calculating the resulting averages for a system, it is convenient to introduce the

partition function Z defined by
E

Z= j N e T4Q,

so that C=Z"". Thus the average value of any function of the p’s and ¢’s,
A(p,q), is then given by

(A(p,q)) = é-[n Ae_%dﬂ.
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We shall use overbars and angle brackets to denote averages; overbars will
denote time averages, and angle brackets will denote ensemble averages. It is a
fundamental tenet of statistical mechanics (see Section 1.5.4) that, for a
stationary process, the time-averaged behavior of a system is equal to the
ensemble-averaged behavior. In particular, the average total energy is given by

1 ¢ JE
(B)==[ Ee*aQ.
| 7da
Suppose that the coordinates are chosen such that the kinetic energy is

expressed as a sum of squares of the momenta with constant coefficients, that is,
Z,- p! /(2m,), and the Hamiltonian is thus

, 1,
E=) —p +V(q).
Z il
Then, in calculating Z, or the average of any function of the coordinates only,
the integrals that occur are the products of integrals over the position and
momentum coordinates, respectively. For example, in evaluating (E),

_1_<p?->= 1 Tp?e_%dp./T e 2:'iTcz’lz;'. ~Lir,
! ' ! ~ L2

2m, Q_mi_

00

Thus, we have the equipartition theorem as described above: the mean value of
the kinetic energy in any coordinate (one degree of freedom) is k7' /2. The same
is true for potential energy terms, which are simply of the form Kq’/2 (a
harmonic oscillator), assuming that ¢; does not enter the Hamiltonian in any
other form. If the coordinate g; enters the Hamiltonian as pll(2m)+K.q’ /2,
however, the particle cannot come into thermal equilibrium with the remainder
of the system; thus there must be some kind of interaction between it and the rest
of the system. This interaction is generally provided by a mechanism such as the
collision of gas molecules with the particle, which constitutes the oscillator. In
general, if the interaction energy depends solely on the coordinates, and not on
the momenta, then the equipartition theorem holds,

According to the theorem, each degree of freedom has associated with it a
mean kinetic energy k7 /2. Hence, one may calculate the fluctuations due to
this thermal energy in perfect generality from the laws of statistical mechanics.
This is possible because the average energy of these random motions will be
exactly the same for all systems at the same temperature (so long as each is in
thermodynamic equilibrium with its surroundings), and will be entirely
independent of the nature of the systems and the mechanisms that produce them.
The energy distribution will be a function of the particular system in question.
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Barnes and Silverman [29] show how the equipartition theorem may be used to
set a natural limit on the ultimate sensitivity of all measuring devices.

1.5.6. Liouville equation

In Section 1.2 above, we very briefly alluded to the Klein—Kramers equation for
the evolution of the PDF f in the phase space (x, v); unlike the (approximate)
Smoluchowski equation, Eq. (1.2.6), used by Einstein, this includes exactly the
effect of the inertia of the Brownian particles, We remark that the Smoluchowski
equation is an approximate equation for the evolution of the PDF in
configuration space (x), which assumes that the velocities are already in
equilibrium. In the Langevin picture, this assumption is contained in the steps in
going from the exact Eq. (1.3.8) to the approximate Eq. (1.3.12). Consequently,
the Smoluchowski equation describes the evolution of the PDF in configuration
space in the limit of very high friction or small inertial effects. Returning again
to the Klein—Kramers equation and the question of a plausible derivation of that
equation along the lines of that presented for the Smoluchowski equation in Egs.
(1.2.1)+1.2.6) above, it is first necessary to refer to a purely dynamical theorem
due to Liouville [23]. This theorem provides an ideal basis for the discussion of
the effect of a heat bath on a dynamical system. For convenience, we will use
Hamilton’s canonical variables, namely position ¢ and momentum p. Here, we
shall also follow [23] and use the symbol p for the density of representative
points in the phase space (g, p).

The dynamical evolution of a conservative system is, in general, described
by the Liouville equation (see Tolman [23]), which, for a system of N particles,
which have 3N degrees of freedom, with Hamiltonian

Wop?
H=Z?+V{ql,qz,...,qw}, (1.5.6.1)
i=1 i
18
D
=2 _y, (1.5.6.2)
Dt

where D/ Dt is the total or hydrodynamical (convective) derivative operator
defined by

D/Dt=08/0t+wu-grad (1.5.6.3)
and u=(q,p) is the 6N-dimensional vector, which is the flow vector in phase
space. Equation (1.5.6.2) follows from the continuity equation p+divup=0
since divau =0, because Hamiltonian’s equations are obeyed. A very detailed
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account of the Liouville equation is given by Tolman [23]. The hydrodynamical
derivative is defined as the derivative evaluated at a moving phase point
{q(#),p(1)}. The statement Dp/Dt=0 means that there is no tendency for
phase points to “crowd” into any particular region of phase space; i.e., phase
space behaves like an incompressible fluid whose representative point is
{q(1),p(1)}. Put in yet another way, the density in the neighborhood of any
selected moving representative point is constant along the trajectory of that
point. This principle is known as the principle of conservation of density in
phase space; in other words, phase points stream [41]. In mathematical terms,
the principle is written as

pla).p).1,]= pla(), p(),t].

The second important property arising from the incompressible nature of phase
space is the principle of conservation of extension (“volume™) in phase space,
dq(r)dp(?) = dq(r,)dp(t,), so that, even though the shape of the region Av in
phase space may alter with the course of time, its volume does not [41].

Equation (1.5.6.2) is known as the Liouville equation, which for N particles
moving in three dimensions (so that we have a 6V-dimensional phase space or
12N-dimensional if the rotational degrees of freedom are added) is often written
as

Dp op

—=——+{p, H :0’ 1.5.6.4
D {p.H} ( )
where {p, H} is the Poisson bracket defined as
N OH 8p 6H 8
{p,H} = Z[~i———-—’”— . (1.5.6.5)
=1 \ 0P, g, 0q; dp,

We shall see later that the theorem also applies to non-additive Hamiltonians.

1.5.7. Reduction of the Liouville equation

The Liouville equation is an equation with a number of variables of order 107
and so is not tractable. In order to discuss the average dynamical behavior of a
particle or system embedded in a heat bath, it is necessary [4] to modify the
Liouville equation by both reducing it and generalizing it: reducing it by limiting
the degrees of freedom to a small but representative set with a well-defined
potential, and generalizing it by the addition of terms on the right-hand side of
Eq. (1.5.6.4) to account for the interaction between this small set and the
remaining degrees of freedom (the background or heat bath). The first, and best-
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known, such reduction and generalization of the Liouville equation is due to
Boltzmann (this is the integro-differential equation for the single-particle
distribution function [37]). Boltzmann [31], in his attempt to demonstrate that
the molecules of the gas) would be to bring about a Maxwell-Boltzmann
distribution of positions and velocities, formulated his famous equation [36, 37].
This equation describes the time evolution of the density of molecules in phase
space provided that only encounters between two molecules (i.e., two-body
interactions) are ever of any importance [31, 37].

The Boltzmann equation, which is a closed equation [31, 36, 37] for the
single-particle distribution function, is now the fundamental equation that allows
one to describe the bath itself in a microscopic way. The particular law of binary
collisions (Stosszahlansatz) describes the interactions between the molecules of
the bath. The binary collision assumption amounts to stating that encounters
with other molecules occupy only a very small part of the lifetime of a molecule.
Alternatively [37], it states that encounters in which more than two molecules
take part can be neglected both in number and in their effect in comparison with
binary encounters. Furthermore, in considering binary encounters between
molecules having velocities within assigned ranges, it is assumed that both scts
of molecules are distributed at random and without any correlation between
velocity and position in the neighborhood of the point where the collision takes
place. This is the “molecular chaos” assumption of Boltzmann [31, 36]. The
theory of Brownian movement instigated by Einstein, Smoluchowski, and
Langevin, and by Bachelier [17, 19] in 1900 for financial systems, is essentially
a particular case of this reduction. Here, in an individual collision, the positions
are almost unchanged and the velocities are altered by such small amounts that
they can be treated as infinitesimal, so that the Boltzmann equation reduces to a
linear partial differential equation in phase space. This equation for the
particular case of point particles, which always have separable and additive
Hamiltonians, is now known as the Klein—-Kramers cquation. The Klemn—
Kramers equation is intimately connected to the Langevin equation, which, for
the sake of completeness, we will again refer to at this juncture.

1.5.8. Langevin equation for a system with one degree of freedom

Langevin treated the Brownian motion of a free particle embedded in a heat bath
by simply writing down the Newtonian equation of motion of the particle,
accounting for the interaction of the particle with the bath by adding to the
Newtonian equation a systematic retarding force proportional to the velocity of
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the particle (which tends to drive it towards a “dead” state [24]); superimposed
on this is a rapidly fluctuating force maintaining the motion, which we now call
white noise. We shall generalize Langevin’s treatment by supposing that the
particle moves in a potential V' (x), hence

gt-x(t);M, —;‘r—;p(f)=—-§—xV[x(t)J—ﬁp(t)+F(t). (1.5.8.1)

m

Here f=¢ /m is the friction coefficient per unit mass and not the fugacity. In
Kramers’ paper [43] of 1940, the force —f P+ F() (X(¢) in his notation) is
aptly termed “irregular force due to the medium.” The white noise force F(¢) has
the following properties:

F()=0, (1.5.8.2)
F(t,)F(1,) = 2D58(t, —t,), (1.5.8.3)

where D = {kT. The overbar means the statistical average over the realizations
of F, i.e., the values it actually takes on. Since F (#) is a random variable, then
p(f) and x(#) are also random variables. All averages are performed over a very
small time interval z with p and x taking sharp initial values at the starting time
t. The statistics of F(r), written down above, are, however, insufficient to
describe the problem fully, as neither the Klein—Kramers equation, nor the set of
statistical moments of the system generated by directly averaging the Langevin
equation, can be written down without supposing that F(f) is also Gaussian,
i.e., F(t) must obey Isserlis’s theorem (see Section 1.3).

1.5.9. Intuitive derivation of the Klein—Kramers equation

The intuitive derivation of the Kramers equation, which we shall now give,
follows that of Einstein [3] who included thermal agitation in the continuity
equation for a particle subjected to a force, K =—dV / dx, by simply adding a
diffusion term to the continuity equation for the number density or concentration
of particles in configuration space. This enabled him to write down the
Smoluchowski equation for the evolution of the number density in configuration
space. We shall apply the same procedure to the Liouville equation. Thus, that
equation is reduced to the Liouville equation for a single particle, with the
behavior of all the other particles (or the bath) being represented by the drift and
diffusion terms we shall add; hence the hydrodynamical derivative Dp/ Dt is
no longer zero and the phase points diffuse.

We shall first consider the behavior of the system governed by Eq. (1.5.8.1)
without the white noise term (but including the damping term). We now have
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) p op dv \op ox _ 0 (dV ‘
divipu) =22 | pp+ &L 4 p| E _ g 9 (47 ] 5.9,
MG [ﬁ“ dxj@erp[ax p ap(dxﬂ (1.5.9.1

Since x and x are independent variables they play the role of generalized
coordinates, and since d¥ /dx is independent of p, Eq. (1.5.9.1) reduces to

. 0 dV\o ,
div(pu) =222 _ [)’p+———]~—£— 2 (1.5.9.2)
| m ox dx J Op
Hence, the continuity equation which would ultimately result in a “dead” state
becomes
dp pop [ dVJ op o
—+——-| fp+— |——Po=0. 1.5.9.3
ot m oOx Fp dx ) Op pe ( )
To take account of the fluctuating term causing the system to remain in a
“live” state, we must now, following Einstein’s method for the Smoluchowski
equation, add on the diffusion term Dpﬁz p/dp*, where the diffusion
coefficient D, is independent of p, and so Eq. (1.5.9.3) becomes

Op po% dVop_0(g, ,.p 2| (1.5.9.4)
ot mox dx dp Op P op
Now we insist, following Einstein, that the equilibrium solution (the
Maxwell-Boltzmann distribution) be a solution of Eq. (1.5.9.4). Thus

D, =(kT, (1.5.9.5)

and so Eq. (1.5.9.4) becomes

a=p+£a=p—d—Va—P=ﬂ—Q—[pp+ka—q’?-J. (1.5.9.6)
ot mox dx Op op op

Equation (1.5.9.6) is the Klein—Kramers equation for the evolution of the density
p in phase space. The effect of having a nonzero right-hand side of the Liouville
equation is to cause a disturbance of the streaming motion of the representative
points so that they diffuse onto other energy trajectories. The energy of the
Brownian particle is no longer conserved as energy is interchanged between that
particle and the bath. Equation (1.5.9.6) reduces to Eq. (1.2.7) specialized to the
phase space (x, v) if the replacement p — W, p — mx, is made.

In the analysis presented in this section, and in the sections immediately
preceding it, we have adhered as far as possible to the original notation used by
Kramers [43, 44] in his discussion of the derivation of the Klein-Kramers
equation. We shall now briefly outline how the Smoluchowski equation may be
derived heuristically from the Klein—Kramers equation. Thus it is necessary to
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refer to the conditions under which a Maxwellian distribution of velocities may
be assumed to prevail in the Klein—Kramers equation.

1.5.10. Conditions under which a Maxwellian distribution in the velocities
may be deemed to be attained

Having obtained the Klein—-Kramers equation for the time evolution of the
distribution function in the phase space (x, p), Kramers [43, 44] proceeded to
cxamine the conditions under which equilibrium in the velocities may be
assumed to have been attained, the displacement having not yet attained its
cquilibrium value. The importance of such an investigation is that it allows one
to write, for sufficiently high values of the friction parameter, an approximate
partial differential equation for the time evolution of the PDF in configuration
space only. This approximate equation is known as the Smoluchowski equation;
sce Eq. (1.2.6). In order to explain Kramers’ reasoning on this subject, it will be
uscful to recall Einstein’s 1905 result for the mean square displacement of a
Brownian particle, namely (7 = ltl in all cases)

((Ax)*) = (2kT / ). (1.5.10.1)

This equation, as we saw in Section 1.4, was derived by constructing the partial
differential equation for the time evolution in configuration space only, and was
later re-derived by Langevin, as we saw in Section 1.3, by considering times
well in excess of the frictional relaxation time T, =m /¢, which allowed him to
postulate an approximate Maxwellian distribution for the velocities. Equation
(1.5.10.1) has the flaw that it is not root-mean-square differentiable at very small
times. In 1930, Uhlenbeck and Ornstein [45] showed, using the Langevin
cquation without the assumption of Eq. (1.3.9) above (namely that equilibrium
of velocitics has been attained), that the exact solution for the mean-square
displacement of a free Brownian particle in a time interval ¢ is

((Ax)*) = 26T (Bt —1+e" )/ (m ). (1.5.10.2)

This is differentiable at short times; a derivation of Eq. (1.5.10.2) is given in
Chapter 3. Morcover, if t >> 87, FEinstein’s result, Eq. (1.5.10.1), is regained.
The mean-squarc displacement is thus governed by two characteristic times,
viz.,

T = mB{AX) )/ (2KT) (1.5.10.3)
(the diffusion time) and 7, = 8" (the frictional time). The ratio of these times is

I / Ty = 2kT /[((AX)Ym B2 . (1.5.10.4)
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Now diffusion effects, where a Maxwellian distribution of velocitics
approximately holds, will predominate over inertial effects if 7, /7,,<<1
which by transposition means ((Ax)*)""? >> (kT / f7m)""*, so that the quantity

(kT p7m)" (1.5.10.5)

defined by Kramers is a characteristic diffusion length, which crucially
determines whether inertial or diffusion effects will predominate.

As far as Brownian motion under the influence of a potential F(x) is
concerned, Kramers applied the above reasoning to this problem by supposing

that the force K =—dV /dx does not vary greatly over distances of the order of

the diffusion length Eq. (1.5.10.5). So one would expect that, starting from an
arbitrary initial distribution p(x, p,0), a Maxwellian distribution of the
momentum p would be reached after time intervals Af >> 7' allowing Kramers
to postulate that

p(x, p.t) = f(x,1) e "mD, (1.5.10.6)

The reasoning of this section is of crucial importance in the study of
dielectric relaxation, where the omission of inertial effects in the Debye theory
of dielectric relaxation leads to the phenomenon of infinite integral absorption.
The above considerations may now be used in the heuristic derivation of the
Smoluchowski equation from the Klein—Kramers equation. The range of the
friction or dissipative parameter over which the Smoluchowski equation
provides an accurate description of the configuration space distribution function
is termed by Kramers [43, 44] the very-high-damping (VHD) regime. This
terminology distinguishes the region of validity of the Smoluchowski equation
from the intermediate-to-high-damping (IHD) and very-low-damping (VLD)
regimes where inertial effects are important, so that the complete phase space
description provided by the Klein-Kramers equation must be used. The
distinctions between the various damping regimes are vital in the application of
the theory of Brownian movement to reaction rate theory [43, 44], as we shall
describe in detail in Section 1.13.

1.5.11. Very-high-damping (VHD) regime

This is a limiting case of the IHD regime, in which it is supposed that the
damping is so large that equilibrium of the velocity distribution has been
equation for the evolution of the distribution function in configuration space
only. This approximate diffusion equation is called the Smoluchowski equation,
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First, we recall what we mean by large viscosity. By large viscosity we mean
that the effect of Brownian forces on the velocity of the particle is much larger
than the effect of the external force K(x). The Smoluchowski €quation may be
derived, according to Kramers, by assuming that K does not vary sensibly over a
distance of the order of the diffusion length, Eq. (1.5.10.5). We expect that,
irrespective of the initial p distribution, the distribution (with m =1 following
Kramers [43, 44])

p(x,p,t)= f(x,0)e? D) (1.5.11.1)

(i.e., a Maxwellian velocity distribution) will hold after a very short time
(=B "). The high barrier then ensures that slow diffusion of particles over the
barrier will take place, which may be expected to satisfy the Smoluchowski
equation for the PDF f(x,#) in configuration space:

d__3 (5 _i"fai). (15.11.2)
o o\ g’ ax

Kramers then examines the approximate validity of Eq. (1.5.11.1). He remarks
that, as long as no perfect temperature equilibrium is attained, Eq. (1.5.11,1) will
hold only approximately, even when the external force is equal to 0; see the
approximate Eq. (1.5.10.1). He then claims that, while the Maxwellian velocity
distribution will now hold exactly for each particle, it will not hold exactly at
each value of x, since otherwise there would be no diffusion current. Thus, the
behavior is unlike that described by a single space variable Fokker—Planck
cquation such as that governing the magnetization relaxation in uniaxial
superparamagnets (to be treated in Section 1.18.1), which is an exact equation.

In order to derive Eq. (1.5.11.2) from the Klein—Kramers equation, Eq.
(1.5.9.6), in heuristic fashion, we first rewrite that equation as

P[50 0N ppasrde K, kTop)_0 X, Kop) 15113
ot op  Ox op p B o) ox B B ox

This can be checked most easily by directly rewriting Eq. (1.5.11.3) in the form
of Eq. (1.5.9.6). We now integrate both sides (with respect to the momentum)
along a straight linc in phase space x+p/B=x, (constant). The integration
extends over all possible momentum values from p=-—c0to p=+w, Note

whence @/dp—p'0/6x is the zero operator along this line. If we denote the
integral of p along this line by f (x,,1), we obtain
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) 0 kT ,
g | ._ﬂﬁp———éﬂ}m. (1.5.11.4)
at x+p/ f=x, 6](: ﬁ ﬂ ax
In Eq. (1.5.11.4), note that the line integral is strictly speaking
| LQEEP_EEQé}m (1.5.11.5)
x+pl B=x, ax ﬂ ﬁ ﬁx

where ds is the element of arc length along the line in question. However, since
ds® =dx* +dp* and dp/dx=—p or dp=—fdx, and because f — oo, i.c., wc
take the high-friction limit, we can make the approximation ds = dp. Thus. the
position coordinate has the value x = x, along the line x+ p/f=x,. We also
use the fact that

x+pl f=x, ot ot x+plB=xy ot

The right-hand side of Eq. (1.5.11.4) can be simplified to yield
(K kT op kT o | K(x of |
- g(_p____p_Jdpz___ [ () ,_ 9 }

wtpifimta p B ox p ox,| kT ox,
Thus, we have the result (apparently due to Klein [4])
kT of K(x)
Oy M oY KO (1.5.11.7)
ot B ox,\ox, kT

which is a diffusion equation in configuration space, and is the Smoluchowski
equation.

The approximate validity of Eq. (1.5.11.7) is a consequence of the
approximate validity of Eq. (1.5.11.1) if it is also assumed that, in the range of
values of p that dominate the integral (that is, | p‘I < kT ), the variation of x
(which is of the order of kT 1 ) is small compared to distances over which
the force K and the density in configuration space f undergo marked variations.
These are, however, the conditions which a priori must be imposed in order to
ensure the applicability of Eq. (1.5.11.2). However, since we integrate along the
line p/f =x,—x, and since both x and x, are of the order of the diffusion
length JiT / S, we expect p to be of the order of JkT , Le., the thermal value,

We have given above a heuristic derivation of the approximate equation for
the PDF in configuration space, known as the Smoluchowski cquation, from the
Klein—Kramers equation. The first rigorous treatment of the problem was given
by Brinkman [46]. He showed that the solution of the Klein-Kramers equation
could be found by expanding the momentum part of the phase space PDF in
appropriate sets of orthogonal functions, and in the small inertial limit, the
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Smoluchowski equation could be obtained. Brinkman’s method may be
summarized as follows. First, one expands the momentum part of the solution of
the Klein—Kramers equation in an orthogonal basis of the parabolic cylinder
functions D, (y) [47] as

Pl p 1) =" 0N D (p /KT )o,(x.1). (1.5.11.8)

Now we recall that D, () satisfy the recurrence relations [47]

d d _
=D, (y)+ 921 D,(y)-nD,_,(y) =0, >0 —%D,, (1 +D,,(») =0,

dy d
D,a(»)=yD,(»)+nD,_ (y) =0, (1.5.11.9)
the differential equation
d’ 1y
—D +H n+=——=—|D =0, 1.5.11.10
dyZ n(y) [ 2 4J n(y) ( )

and the orthogonality relation

o

[ D, D, )y =niN2z5, (1.5.11.11)
where &, denotes Kronecker’s delta, By substituting Eq. (1.5.11.8) into the
Klein—Kramers equation, Eq. (1.5.9.6), and using Eqs. (1.5.11.9) and
(1.5.11.10), we have the following partial differential-recurrence relation for the
separation functions @, in configuration space

op 99, 00, |, 1 ov ,

TP, +NET | L i (n+1) 2 2 0. (1.5.11.12
This set is now called Brinkman’s hierarchy. Following Brinkman, on defining
the spatial differential (or current) operators

1l =t 3 1 a7V 1 0
J==e KT | —+—— |, J, =——~[kT —, 1.5.11.13
V;; [Bx kT 5xJ B o ( )
the Brinkman hierarchy becomes the three-term partial differential-recurrence
relation
—}9—{[)" +tng, =Jo,  +(n+1)J0,,,. (1.5.11.14)
If we now take the Laplace transform over the time variable and suppose that the
initial velocity distribution is Maxwellian so that @,(x,0)=0, n>0, we find in
the s-domain that Eq. (1.5.11.14) becomes the set
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5P, — @ (x,0) = BJ L@,
1+s/B)p =J@, +2J,¢,,
( ) AR (15.11.15)

(n+‘5‘//8)¢n = J@n—l +(’1+1)JD¢n+l’ v
where

B, =,(x,5) = [ p(x, )™ dt.
0

This set may then be solved by successive approximations [46, 48], yielding the
Laplace transform of the configuration space distribution

plod - 2Byl
(1+s/8)7°  (245/B)(1+s/ B)
In the high-dissipation and Jlow-frequency (or long time) limits, where

s/ — 0, only the leading term on the right-hand side of Eq. (1.5.11.16)
survives and we are left, since J,J ~O(B™"), with

5@y — 9y (x,0) = @y +-. (1.5.11.16)

5@, —@,(x,0) = BT, J @, (1.5.11.17)
which, on inversion to the time domain, yields the Smoluchowski equation, 1.e.,
| 0
0p, KT 5| OV 00 | (1.5.11.18)
ot B ox| kT ox Ox

We note that Egs. (1.5.11.15) may be formally arranged in the coordinate
representation as the continued fraction of operators

BrIs T
28,

@0 — @, (x,0) = 7. (1.5.11.19)

This equation may also be written in a Heisenberg-like representation where, by
postulating a suitable spatial basis and corresponding state vector, we may
replace the spatial differential operators Jp and J by matrices, so that Eq.
(1.5.11.19) may be represented as a matrix continued fraction for the
observables. This representation is very useful for computational purposes and
constitutes a central theme of this book.

Returning to Eq. (1.5.11.16), we remark that the strong damping limit is
often defined merely by the condition S~' — 0. This definition is, however,
insufficient because it is abundantly clear from Eq. (1.5.11.16) that, besides
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specifying the latter condition, one must also impose a time- or frequency-
domain condition, viz., low frequencies s< B or long times > 8" (cf
Einstein’s discussion reproduced in Section 1.4). Thus the Smoluchowski
equation can never be used in the high-frequency region, where inertial effects
are important.

Further discussions of the problem, which are based on the Chapman-—
Enskog method [37] in the kinetic theory of gases, are well summarized by van
Kampen [49]. The overriding advantage of considering the VHD limit discussed
above is that it is possible to derive a diffusion equation in configuration space
only. Moreover, this equation is in a single coordinate. Yet another example,
where this may be done, is the VLD limit; this is of overwhelming importance in
the application of the theory of Brownian motion to reaction rate theory (see
Section 1.13 below). It is impossible, however, to derive a single-variable
diffusion equation from the Klein—Kramers equation for arbitrary damping.

1.5.12. Very-low-damping (VLD) regime

We again refer to the discussion of the Klein—Kramers equation by Kramers
[43], where a Brownian particle moves in the potential well generated by the
force K(x); see Fig. (1.13.1). Here Kramers restricts the discussion to the
situation in which the particle would perform an oscillatory motion in the well,
characterized by closed phase trajectories, save for the Brownian forces. Small
viscosily means that the Brownian forces cause only a tiny perturbation in the
undamped energy during one oscillation in the well, meaning that the Brownian
forces will cause gradual changes in the distribution of the ensemble over the
different energy values. This is energy controlled diffusion.

We now write the original Klein—Kramers equation in the canonical variables
(x, p) as a diffusion equation in the energy (£) and phase (w). We can do this
since, for small damping, the energy is a slowly varying quantity and the phase a
fast varying quantity. Thus, we will be able to average the density over the fast
phase variable and obtain a diffusion cquation in the slow (almost-conserved)
energy variable. We define the time average along a trajectory corresponding to
the saddle point (now a one-dimensional maximum) of the potential energy

_ o
PE, 1) =— [ p(E, w1y, (1.5.12.1)
4]

where 7" is the time required to execute one cycle of the almost periodic motion
on the separatrix trajectory with the saddle-point energy. The average is taken
along the energy trajectory, so that
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dt = dw (1.5.12.2)
(along a trajectory). If we define the action § at energy £ by the equation
S(E)= ¢ pdg (1.5.12.3)
E=const

and allow the energy to vary by an amount dE over a thin ring of thickness dS,
we can account for the slow diffusion of energy. (The assumption that the
damping has a negligible effect over one period means that the energy loss per
cycle of the motion at the saddle-point energy is much smaller than AT see
Section 1.13 below.) We assume that the motion of the particles in the well
would always have closed orbits in the absence of Brownian forces, were it not
for the slow diffusion of energy which interferes with the streaming librational
motion. In general, the trajectories represent a leisurely spiraling towards
the energy minimum, owing to the energy loss dE per cycle. Hence, the
trajectories of the noisy motion at the saddle energy are almost closed (i.c..
almost periodic).
Now in the Klein—Kramers Eq. (1.5.9.6), viz.,
6,0 v op pop

d dp c 1o g
o PO g 00 it 2P 1.5.12.4
o dx dp mox ﬁ@p(pp " Bp] ( )

if there were no dissipation of energy, we would have by Liouville’s theorem,
8,0 av op pop

—_———— (1.5.12.5)
ot dx & mdx
Thus the remaining (diffusive) part of Eq. (1.5.12.4), viz,,
0 op
,B—(pp+ka—p} (1.5.12.6)
ap op

describes, in the present context, the very slow dissipation of energy. We now
transform Eq. (1.5.12.4) into an equation in the energy and phase variables by
using the Hamiltonian

2

E=2 v (1.5.12.7)
2m
We have

(1.5.12.8)

which, on taking either the positive or negative sign and intcgrating the
resulting first-order differential equation between points x; =x(0) and x, yields

L
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j 2[E-V]/m)™" ax' =t +w, (1.5.12.9)

where the constant of integration w defines the phase. Now Egq. (1.5.12.2)
implies that v =1, and since the variation in energy is by hypothesis very slow,
we have E ~0; that is, almost a conservative system. Because p=-dV /dx,
we have, by the chain rule,

Op OpOE opow 6p_§e§£+§£5l

=——+ L= 2_54 , (1.5.12.10)
& OEdx owodx p OE op Ow dp
where
E_ A ow I_m E_p ow_,
& dx’ o x p’ p m’ dp
using Eqs. (1.5.12.7) and (1.5.12.9). Thus
L. Vo md . P2 (1.5.12.11)

ox dx OE pow op mdoE
so that the Klein—Kramers equation, Eq. (1.5.12.4), becomes
dp _ Op  Pp 8 | op
L PP kT PP 1.5.12.12
o ow m oE\"PTPY 55 ( )
Now, defining the average over one cycle of the almost-periodic motion at
the energy E by Eq. (1.5. 12.1), we have from Eq. (1 5.12.12)
& __ %, Bpd

op :
—| pp+ pkT == |. 1.5.12.13
ot ow m 8E[pp P 8E] ( )

Averages of derivatives may now be expressed as derivatives of averages as
follows. We have

o 170 817 2
2= ———pdw=—-—jpdw=%‘? and 9% _
0

lra—pdw— . ‘Trd =0
ot T'4 ot ot T Ty £="

ow T ow
since the integral is taken over one complete cycle of the motion, p(T)= £(0).

Note that Eq. (1.5.12.13) holds only approximately, since

dp:a—p—dE-l--aﬁdw
oFE ow

However, £ is slowly varying, so that in one cycle dE ~ 0 and so

dp zgw‘@dw. (1.5.12.14)
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The averaged Klein—Kramers Eq. (1.5.12.13) then becomes

op_B[ 200, 0, P&, T
92 _Pl 2Py pp Py phr PP | pp 9P| 15.12.15
o m[p o TPoE T eEaE T aE? ( :

which, using Eq. (1.5.12.10), simplifies to

dp _ P op dp p'kT &p
—=f ——+p+kT —+—-— | 1.5.12.16)
ot ﬁ(m oE © O0F m OE’) (1.5.12.16)
On assuming that p*p = FZ and because
p_ 1%0p op .= 17,
——dw= pdw=—— and p° =— | p“dw,
OE T')2E T&EJ‘. oF M T'-([p "

we find that Eq. (1.5.12.16) finally becomes
8= (1 = 0 8 kT= & ]=

il ot 1+ T —+— 0, 1.5.12.17
PP\ ? o i el L )

Furthermore, since we are taking the average along a closed orbit, dw = df and
the periodic time in the well is 27/ w(E), where o= w(F) is the angular

frequency of oscillation in the well at energy E, so that
e 2nlw 2rle wom

Za;r J pidt= ;; J pmxdt = —-—Cf) pd’cbz—-S
0

N,

where § is the action over one period. Thus, Eq. (1.5.12.17) reduces to

0= wS 0 , 0 , ,
— +kT — 1.5.12.18)
P ﬂ( . EEJ(p E p] ( )
Since @ =2xdE/dS, Eq. (1.5.12.18) becomes (writing p for E)
op ZﬂkTS op e 1n
—= 1.5.12.19
ot Fas ( @ 6.5‘) ( )

This corresponds to diffusion along the §- or E-coordinate; the proper diffusion
term corresponds to a diffusion coefficient D =2a8kTS/w. The above
paragraph constitutes an extended version of Kramers’ original method of
arriving at the energy diffusion equation. Further discussion of this will be found
in van Kampen [49], Hinggi et al. [50], and Coffey et al. [44]. The energy-
controlled diffusion equation, Eq. (1.5.12.19) is essential regarding the
contribution of Kramers to reaction-rate theory (cf. Chapter 1, Section 1.13).

|
i
i
i
i
|
|
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We remark that Praestgaard and van Kampen [51], by treating the rotational
Brownian motion of a fixed-axis rotator in a potential V(&) in the energy-
diffusion limit via the Fokker—Planck equation for the PDF p(6,0.,1), viz.,

@=lﬂ§@—éai+ﬂi(pé+kla—"?), (1.5.12.20)
ot 1d8os 08 06 I 86)

have also derived a single-variable Fokker—Planck equation for the PDF p(E, f)
in energy space

2 A

op 0 [ =3 ) 0" =
=B | 10°(E)—kT |+ kT —60°(F) | p, 1.5.12.21
Py ﬂ[aE (£) aEz()ﬁ_( )
where I is the moment of inertia. The method of Praestgaard and van Kampen
[51] is also applicable to one-dimensional translational Brownian motion. The
translational analog of Eq. (1.5.12.21) is given by

ap o (1= ) kI & =
—=f8—=| =P E) kT [+=——p*(E) |p. (15.12.22)
> ﬂ[ﬁE[mp( ) maEzp( ) o | )

We shall use Egs. (1.5.12.21) and (1.5.12.22) in Chapter 10.

1.6. Probability theory

This section reviews the fundamental concepts of probability theory on which
the theoretical treatment of Brownian motion is founded. Again, readers who are
familiar with these concepts may conveniently skip this section.

By way of introduction, we cannot improve on the elegant description of the
emergence of probability theory as a fundamental tool in physics, given by Born
[38] in his Natural Philosophy of Cause and Chance (see also [31, 39)).

“The new turn in physics was the introduction of atomistics and
statistics. To follow up the history of atomistics into the remote past is not
in the plan of this lecture. We can take it for granted that since the days of
Democritus the hypothesis of matter being composed of ultimate and
indivisible particles was familiar to every educated man. It was reviewed
when the time was ripe. Lord Kelvin quotes frequently a Father Boscovich
as one of the first to use atomistic considerations to solve physical
problems; he lived in the eighteenth century, and there may have been
others, of whom I know nothing, thinking on the same lines. The first
systematic use of atomistics was made in chemistry, where it allowed the
reduction of innumerable substances to a relatively small stock of
elements. Physics followed considerably later because atomistics as such
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was of no great use without another fundamental idea, namely that the
observable properties of matter are not intrinsic properties of its smallest
parts but averages over distributions governed by the laws of chance,

The theory of probability itself, which expresses these laws, is much
older; it sprang not from the needs of natural science, but from gambling
and other, more or less disreputable, human activities.”

The most important concept of that theory that we shall need is the random
variable. This is a quantity [25] that may take on any of the values of a specified
set with a specified relative frequency or probability. The random variable could
be a vector molecular property, such as center of mass velocity, angular
momentum, or dipole orientation; or a tensor, such as polarizability. It is
regarded as being defined not only by a set of permissible values (such as an
ordinary mathematical variable has), but by an associated probability function
expressing the relative frequency of occurrence of these values in the situation
under discussion.

1.6.1. Random variables and probability distributions

We may formalize the above concepts as follows. Let Q be a set called the
sample space of an outcome of a random experiment or occurrence [25, 52].
Each subset A< Q is called an event. We wish to formalize the idea of the
chance of obtaining an outcome lying in a specified subset 4 Q into a
definition of probability. We shall need a finction that assigns a unigue number
or measure (called probability) to each such A.

Definition 1: We call P(4) a probability function if to each event 4 c Q,
P(A4) assigns a number P(A4) to each 4 such that

0<SPUAY<1, P(Q)=1,

and if Ay, A,, ... are events with 4 N4, =@ (i+# j), where & denotes the
empty set, then

P(UA,, ] = P(4,).

n=1 =1

For two events 4 and B, the conditional probability is given by [52]

P(ANB)
P(B)

where P(4NB) is the probability function of both 4 and B occurring, and

P(A] B) means the probability function of event 4 occurring if event B occurs.
If the two events 4 and B are siatistically independent, then P(A4 | B) =P (4) and

P(A|B) = : (1.6.1.1)
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P(A~ B)=P(A)P(B). (1.6.1.2)

Consider the experiment of obtaining an event { €€). The experiment can
be described by a set of functions £(¢). The £(¢) are called random variables
because the independent variable £ cannot be predicted. It only takes on values
(its realizations) according to the underlying probability law. More formally, a
random variable may be defined as follows [52].

Definition 2: A random variable £ is a real-valued function with domain Q,
ie, for each e, &()eR. For an n-dimensional random variable
£E=(&,...¢,), wehave §(5)eR". R denotes the real line.

Here, we give a brief outline of some properties of a random variable, &
which are relevant in the present context. The notation of Gnedenko [53] for
random variables and realizations is adhered to as far as possible.

Definition 3: If & is a random variable, its distribution function is defined as

Fy(x) = PIE <,
where x is a real number. The x’s are the realizations (i.e., the values which it

actually takes on) of the random variable £,
If it is possible to write the distribution function as [40]

F,(x)= j (), (1.6.1.3)

meaning that the probability that an observed value of £ lies in the interval
(x, x +dx)is f.dx, then £ is said to be a continuous random variable and f (x)
is its PDF. A4 discrete random variable & will have a probability (mass) function
P ,(A) such that

P (=2, ,p:()

The mean value of a random variable & denoted by ( 4 ) is defined as

<§) = T xf, (x)dx for & continuous (1.6.1.4)
and
<§>‘=Zj X, Py (x;) for & discrete. (1.6.1.5)
Using Egs. (1.6.1.4) and (1.6.1.5), it is obvious that
(c&)=c(&), (&+&)=(&)+(&) (1.6.1.6)

(c being a constant). When (&) vanishes, £ is said to be a centered random
variable [40]. Likewise, for any function g (£) of a random variable &, we have
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(g(§)) = T g(x) f (x)dx for & continuous, (1.6.1.7)

(g(é))zz_ g(xj )‘pg (xj) for & discrete. (1.6.1.8)

J
The variance Var [£] of &, denoted by o (&), is defined as [40, 52] the mean
of (£—(&)), thatis,

(@) ={E-(&)") =(&-26()+(&)=(&)-(¢Y. 1619

The positive square root of the variance, denoted by o (&) is called the standard
deviation of &. This is a measure of the spread or dispersion about the mean, of
the values that the random variable & can assume. The covariance Cov(&,,&,)
of any two random variables & and & is defined as [52]

Cov(&,&)=((& —(EN(& ~ (&) =(&&)-(&)(&).  (1.6.1.10)

Cov(¢,¢&,) is a measure of how & and & are interrelated. When & and & are
independent, then

Cov(‘df, > 4:2 ) =0.

One defines the correlation coefficient of two random variables & and & as
[25,52]

C‘O‘V(él » é:z )
=T 1.6.1.11
P oE)0E) ( :

p1s a measure of the dependence between & and &,

1.6.2. The Gaussian distribution

The distribution function of a continuous random variable, ubiquitous in the
theory of Brownian motion, is the normal distribution, also known as the
Gaussian distribution with PDF [35]

G
@ _w<x<ow, o>, (1.6.2.1)

f;;(x) - J\/ﬂ e »
which has the following properties (i) <§)= i, Var[é]=a?; (ii) S has a
maximum at &= g and (iii) as x — +e0, f, — 0. This distribution is denoted
by N({&), ). It can be shown that the distribution of a random variable ¢ & s
N(c{&),c’c?), while the distribution of &—(&) is N(0,5%). Likewise the
distribution of (£—(&))/ o is N (0, 1) called the standard normal distribution.
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We must now introduce the concept of multi-dimensional random variables.
Let & and & be two continuous random variables. Then we define their joint
PDF f, . (x,y) by the equation

f;:bfz (x,y)dxa’y:P(x <& <x+dx,y<E, £y+dy).

We also define the corresponding joint distribution function by
x ¥y
Foo G =P sx&<y)=[ [ £, (. y)avdy.

Thus, if 7, , is differentiable, the joint PDF is f, g (%, )= 6;"”15:5 5 (6, 3). We
also define the marginal distribution function F, (x) of & as

Fy()=P(&<x, & <w)=[ [ £, (&, y)dvay = [ £, ax,
where F, (x")dx" is called the marginal distribution function of & with PDF
L= fop G5y

As before we may define the average value of a function g (51 6y ) by means of
the equation

(g(&.8))=| | &)1, & y)dxdy.

—60 —0

Clearly (& +&)=(&)+(&,). We remark that

(6&)= T ]D Xf,, o, (x, p)dxdy.

—0 ~0

In certain cases, this may be written as

o0 [=+]

(&& )= [ xhy (dx | ya,, (),

where h and g are the marginal PDFs of & and &, respectively. Thus (& &)=
(&) (&), and & and & are said to be independent random variables; by Eq.
(1.6.1.10) they are uncorrelated. We remark, however, that two uncorrelated
random variables are not necessarily independent — with the exception of
Gaussian random variables. We have so far confined ourselves to ?RZ; all these
results may, however, be carried over to R". Generally, if § is a vector-valued
random variable, and the & are all independent, then

<§l§2§3 §n> = (én >(§2>(§n>
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In general, if § is a random variable with n components &, &, ..., &, its PDF

Seoe (Xi5.,%,) 18 called the joint PDF of the n variables &, ..., £, We are often
interested in the distribution of a subset having s <n variables &, &, ..., &.
The probability that they have certain values between (x,,x +dx,) and
(x,,x, +dx,), etc., irrespective of the remaining variables &, ..., &, is

© o
.fgl..-{' (xl peens Xy ) = I T J. ff;"'{f,. (xl ?""x.v?x.\'-t-l """xn )dx.s'ﬂ ”.dxn'
-0

—c0

This is the most general definition of the marginal density function for the
subset. The most important practical example of a multi-dimensional
distribution 1s the » dimensional Gaussian distribution defined as follows
[13,52, 54]: let (&, ..., &) be n (not necessarily independent) random variables
with means equal to zero. Let f(xy, ..., x,) be their joint PDF; then we say
(&, ..., &) are normally distributed in » dimensions if (we drop the suffixes
from f, . forconvenience)

F(x)=(27)™" (det M) M2 (1.6.2.2)

where M = |u;| is the matrix of the second moments iy = (5,.,;. ), i,j=
1,2,...,n, M is the inverse matrix; det M is its determinant; x is the column
vector with components (xy, ..., X;,), X' is its transpose, and the quadratic form is

X'M™'x=(detM)" 3" M,x, (1.6.2.3)

Y
(M is the cofactor of u; in M). The marginal density functions f(x, ,x, ,....x, )

for the multi-dimensional normal distribution may be determined from

w  ow
f(x‘;l X )= J J\- S X, DXy e X, )X, e
-0 o)

These PDFs represent r-dimensional normal distributions. If the & are
independent then (£ &)=0 (i#j) and M becomes a pure diagonal matrix.
Here f(x, ..., x,)= f(x) f(x,)+- f(x,), where each f(x,) represents a one-
dimensional normal distribution with mean zero and variance y;;.

We may easily evaluate the quadratic form, Eq. (1.6.2.3), explicitly, for
example in the two-dimensional case [52, 54] with PDF f(x,,x,). We have

X=[ZJ, ' =(x %),

M=(ﬂ“ IUIZJ’ M = 1 i [/-"22 _IUIZJ,
M Hy HinHyp —Hp \—H 4y
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so that
1
HiHos — /”12

We now introduce the standard notation

X'M™x = (/“22 =2y %, X, + iy X, )

2
Hy = ‘73, s Hn =0, [y =p0,0
where o, and o, are the standard deviations of the random variables & and &
and p s the correlation coefficient. Our PDF then assumes the standard form

1 r)zl lpxl.rl xzz

1 20-p7) 62 o0,
, —e o .
fgﬁ 16 ( X5 z) 271'0}"7):2 (l_pz)g/z

We have considered, for simplicity, the case of zero means. If the means are
not zero, the multi-dimensional normal distribution has PDF

f(X)‘ - ‘(27[)—»/2 (det R)‘_Uz e—%(x_”‘r R-«l(x_u)‘

where R is now the covariance matrix with elements (&; &) — (&)X &;) and (£).
For example, our two-dimensional Gaussian PDF f, (x,,x,) now becomes

H

1 [(xl V' 2 Wty (2t )2]

1 . 20-p%)| oF o 3, =
112

Jae = 270, 0, (1- 23
(-0 < x,,x, <©). In order to show that f(x) is indeed a PDF, we have to
prove that [52]

j S(x)dx = | j jf(x,, X, ), - dx, =1

In order to accomplish this, we note that R must be positive definite, thus [52]
there exists a non-singular real matrix Q such that R =QQ". We now write
x = Qy+p. The Jacobian of this transformation is |0x/8y| =|detQ|. Thus, the
quadratic form is reduced to a sum of squares, and so

o © ; 0 —Z 212
J“ f(X)dX 2(27[)—;1/2 I‘d(’it Ql—l Jf e’ ¥/2 IdﬂtQ] a!'y 2(2 -n/2 J‘ e 1y dy L

1.6.3. Moment-generating functions

We now introduce the concept of a moment-generating function, which is an
integral transform of a PDF. In particular, consider the function [55]
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g ()= [ €™ f, (x)dx = (&),
This function is termed the characteristic function of the random variable &
Evidently, two random variables have the same characteristic functions if and
only if they have the same PDF. As an example of how to compute characteristic
functions, we evaluate ¢, (v) for £ with the normal distribution (which, in the
centered case, has the remarkable reproductive property that it is itself Gaussian)

RED

e 2o

1
f;(x)‘— O’\/E‘

We have, by completing the square in the argument of the exponential,

I - o« 1 1 s
inp——ou? —(y-muaf dy jup-—ou?
(u)=e 2 e? —=c ! . (1.6.3.1
2 / — )

Furthermore, if £ is a centered Gaussian random variable (i.e., 4 = 0), then
¢, (1) =e" """ 5o that (ei””:>= MR particular, if u =1, (e"‘f > _ )

which 1s a most useful relation. We remark that, by Fourier’s integral theorem
[56],

1

Se(x) = oy _[ e""”ybé (u)du,

so that [25] a knowledge of the characteristic function of a random variable is
equivalent to a knowledge of its PDF.

We now establish a fundamental property of characteristic functions, namely
that the n" derivative of ¢.(u), when evaluated at u =0, gives the #" moment
about zero of the random variable & We have

i d . dz . 2
g0 =(e"), —4©=i(g). T=4.0=()).
and so on. For example, for the normal distribution N (1, &), one has

fup-otut (2 d . s
e (u) =", EI—@(D):”I:I(Q’

and so on. One may continue to show that for this distribution,
<§2>= y+ao?, (éjB‘): 3uc’ + 4’ (g‘*) =302 + 67t + 4,

Furthermore, if (¢) = 4 =0, we have, by successive differentiations,

<é§2n+l>: 0, (é;2n> =(2N—1)!!<§2 )" ,
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which is a most important (reproductive) property of N (0, o).
The characteristic function for the n-dimensional Gaussian PDF is

oY

By matrix multiplication, we have
' x—(x-p) 'R (x—pn)/2
=iu'p—u"Ru/2—(X-p—iRu)" R (x —-p—iRu)/ 2.

j in x—(x—p)TRh'(x—p)t’de

Hence
¢;(u)=< " ‘) g IRz, (1.6.3.2)

In particular, for the two-dimensional case with <§, ) <§2> 0, we have

2
Unul +2p0, crxzulu2+cr uz)/Z

Pz, (“l*”z)_e( ,

which will be widely used in what follows, because this characteristic function
plays a fundamental role in the theory of Brownian movement. Several
properties of Gaussian random variables may be deduced from it.

If & and & are independent random variables, and we have’ the linear
combination z = &1 & + o cfz, then

g () = (e ) = (0 ) (5 ) = g (ayu) ¢, (ayu).

More generally, if (&, ..., &) are n mndependent random variables and we have
the linear combination z = ¢ & + & ++-++ @, &, then

6. =] 18, (e,

This may be used to establish an important property of independent Gaussian
random variables. Let

é:] ~N (lul 3 612 )‘ 5 ¢§1 (u) = e""”' —o2dt 12 ’

&~ N(/“n o ) ; ¢§n (1) = elhn—ont 12

We wish to know the PDF of the linear combination z = Z:=1 a, &, . Evidently

f iZ" rz‘,ﬂku—zn alalu’l2
8.y =]1¢, (au)=e=="""5m :
11;1[ (52 ( k :
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and thus

1= N(ZL, a Hy vzzzl a0} )

So a linear combination of independent normally distributed random variables is
also a normally distributed random variable with mean

M= Zk:l i Hy
and variance
2 n 22
o :Z 0 %O -

The above result applies to a sum of independent Gaussian random variables.
We now consider the analogous result for a linear combination of n not
necessarily independent Gaussian random variables. For simplicity, consider the
sum of two Gaussian random variables & + & and calculate the characteristic
function of this sum, that is, ¢; .. (#). This may be evaluated by simply writing
u; = up in our expression for the characteristic function of the two-dimensional
Gaussian distribution above. We have

¢ (H)‘ - (e,'u(é-‘] +&) > — ei(,u;!1 tHy )u—(o’f] +2po, o, »H;f2 Wiz
i+, '

Thus, &+ &3 is a Gaussian random variable with mean g, + 4, and variance
o, +2p0, 0, +0, .

In the general case, for any real constants ¢, and ¢, the variables ¢, & and
c; & are Gaussian [40]. It follows that any linear combination of & + & is
Gaussian. This may be extended to show that any linear combination of n
Gaussian random variables is itself Gaussian. Furthermore, if {&} are all
centered, so too is the linear combination: if &, & ,..., & are centered Gaussian
random variables and ¢j,¢;,...,¢, is a set of real numbers, then
&=£&¢ +...+& ¢, is also a centered Gaussian random variable.

This result may be used to prove Isserlis’s theorem [26], which is of central
importance in the theory of Brownian motion. We now establish, following [40]
Isserlis’s theorem (also known as Wick’s theorem), that (see Section 1.3)

(51 "'52,,—1>= 0, (fl £2n> = z <o, (C.f,, g, ><é’, g, > (1.6.3.3)

W<hisnln <)

n

(Although this result is often quoted in literature on Brownian motion and is
crucial to the theory, the proof of it is not easily available.) For £ defined above

2

(ef)= _2J—]—<_§T> F ge W gy = 3 (1.6.3.4)
/= om

g
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and, therefore,
o ir L o (‘l)s .
2 W)=X ey (1.6.3.5)

The multiplier of cicy---c, in (£") =&, +--+&c,)) is &, nKEE, &),
while the multiplier of ¢,c;---cz, in {(&2)° is

st 3 (&8)(6.2.).

i< Jy peenslg <Jag

Thus, on comparing the coefficients of ¢ c,---¢c, on both sides of Eq. (1.6.3.5),
we have Isserlis’s theorem. The second Eq. (1.6.3.3) may also be written in the

form
(&8 &)= ZH(f S, >’

lr >Is

the summation being over all products of mean values of different pairs with
decreasing suffixes.

1.6.4. Central limit theorem

The properties of characteristic functions are of considerable use in developing a
fundamental statistical theorem known [18, 35, 54] as the Central Limit
Theorem, which may be stated as follows.

Let {£} be a sequence of independent random variables each having
arbitrary distributions. Then the sums

E=(&+&+8++£)/n

approach a normally distributed random variable as n approaches infinity.
Further, if &; has mean zero and variance (&) = o} <o, then & has mean zero
and variance

2 _ n 2
o = (I/H)Zizl o;.
The theorem may be proved heuristically as follows. Let
&Y =1), (& =v,i=12,.,n

(the exact values of these higher order moments will be of no concern to us in
the present investigation as long as they are uniformly bounded). The
characteristic function g.(u) may be written as

8. (u) = <€iu§> _ H; <eiu§*/\/;>.



Historical Background and Introductory Concepts 53

Taking the logarithm of this gives the logarithmic characteristic function

uol ity u4v4 |
Ing, (u Inj1-—4 . & k...,
¢ Z [ 2n 6n~f; 24n* J
For n — o, the term on the right-hand side under the summation sign may be

approximated by —u*o? /(2n). Hence,
hm[lnqﬁ;(u):l a2

n—®

and thus
¢§ (U) — e—uzcr2/2 ,

where o =limn™" )" ;. The PDF f,(x) of £ is then

H—po0

o gy = e 212e)
fr(x)= j B (u)e™ du = - J— , (1.6.4.1)
which proves the theorem. It should be noted that a rigorous proof of the
theorem requires justification of the various limiting processes involved in
getting to Eq. (1.6.4.1). This can be done by appealing to Lebesgue’s dominated
convergence theorem [57].
The most important concept of probability theory in relation to Brownian
motion is the notion of a random process [25], which we now outline.

1.6.5. Random processes

Consider a random variable £ which depends on the time ¢/, 1.e.,, £ =£(1) (Fig.
1.6.5.1). A random process (also known as a stochastic process) is [12,25, 58] a
family of random variables {£(¢),7 € T}, where 7 is some parameter, generally

&9 i

Figure 1.6.5.1. A realization of the random variable & (r).
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the time, defined on a set 7. &£(¢) does not depend in a completely definite way
on the independent variable ¢ [13]. Instead, one obtains different functions y (?)
in different observations. To describe the random process completely [58], we
partition the set T into instants # <¢, ... < f,<T and then approximate the
family of random variables £(t) by &, ), &(t,). We may then use the
following set of PDFs: B (y,,1,)dy, is the probability of finding &(z,) in the
interval (y,,y, +dy,); Ehi vt Jay, dy, is the joint probability of finding
s(4) in the interval (y,,y +dy) and ¢(t,) in the interval (ys, yo+dy,):
By (¥, 43 35,85 ¥5,8,)dy,dy,dy; is the joint probability of finding &(4,) in the
interval (y,,) +dy,), £(,) in the interval (7,,y, +dy,) and &(t;) in the
interval (3, y3+dys). This may be continued up to B, (y,4;..;¥,,t,)dy, ---dy,.

The process is wide-sense stationary when the underlying probability
distribution during a given interval of time depends only on the length of that
interval and not on when the interval began. Another way of saying this is that
the fundamental mechanism that causes the set of random variables {£(¢)} to
fluctuate does not change over the course of time (temporal invariance) [24].
Hence a shift of the time axis does not influence the Junctions P, , so that our set
becomes B (y,t)dy which is the probability of finding & in (p, y+dy),
£, ¥,,0)dy,dy,, which is the joint probability of finding a pair of values of ¢
in ranges (y,, y, + dy,) and (y,, ), +dy,) which are a time interval ¢ = [ta—1; ]
apart from each other, and so on (for examples of non-stationary processes see
Ref. [25]).

The functions P, may now be determined [13, 25] by experiment from a
single record £(f) taken over a sufficiently long time. One may then cut the
record into segments of length T, where T is long in comparison to all periods
contained in the process. The different segments may then be regarded as the
different records of an ensemble or collection of observations. One must, in
general, distinguish between an ensemble average and a time average. The two
methods of averaging for a stationary process will nevertheless always give the
same result [13, 25].

random process is said to be purely random if the successive valyes of &
A1C Statistically independent. This kind of process is described by [13, 58]

H(ylﬁt] )‘:
B(3,,8; ¥p0ta) = B:)A(0,1,),
167 N3 Vst ¥ t) = IH N )F;(yzz-tz)ﬁ(ypg),.m (1.6.5.1)

A random process is called a Markov process if all the information aboyt the
process ig contained in P, [13, 58]. Recalling the definition of conditional
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probability, we write [13] £,(y,,t, | »;,4)dy, for the probability of y being in
the interval (y,,y, +dy,) at time #, given that y; had occurred at time .
Analogously, this can be extended to higher order probabilities. Thus, a Markov
process is a process such that [13] the conditional probability that y lies in the
interval (y,,v, +dy,) attime 1, given that y,,y,,...,y, , had already occurred
~ at times £,4,,...,7, ;, depends only on the value of y at time ¢_,, i.c., on the
immediate past value, so that '

lpl"‘(yn’tn jyl’tl;ylﬂ‘t2;"';y.'l—l‘5 tn—i) = }:I’Z(yn"tn lyn-l’tn—l)' (1’6'5'2)

A property of a stochastic process of particular interest in connection with
the Brownian motion is the correlation function [59]. The time correlation
function of two-time dependent random variables & (f) and &, (r) with zero
average values 1s defined by supposing that the physical system has obtained a
steady state (thermal equilibrium), as [40] the ensemble average (& (1, Y
(the symbol * denotes the complex conjugate). &; and ¢ at time ¢ will, in general,
depend on position and velocity variables or position and conjugate momentum
variables of the system, which we can denote by u (¢). Thus

(& )t )) = I & Tu(t )16, [t B [ut,), b, |l ), 6, 1Ry [u(e, e, )du(y,),

where F[u(z,)] is the PDF of the system at time ¢, in the steady state. If 7 #,
then (& (1)&,(2,)) is called the cross-correlation function of & and & 1fi=j,
(& (t,)E(@,)) is called the autocorrelation function (ACF) of & It is a measure
of the dependence of the same random variables at different times. The
definition using the complex conjugate ensures that (£ (7)) must be real. The
ACF of a stationary stochastic process is not affected by a shift in time, i.e.,

(é:.'t(tl )‘fj‘(tz n= (é;(tl - tZ)gj(0)>'

1.6.6. Wiener—Khinchin theorem
We now consider a stationary random process &£(¢) with zero average value,
where £(¢f) 1s now a real causal function of time. We consider the Fourier
transform of &(¢) [13, 21, 35, 49], namely

E@)= [ e &nyat. (1.6.6.1)
Then we have the Wiener—Khinchin theorem [21] (proved in Chapter 3)

C, (0) ={E@NEW + 1)) = %T @, (w) cos wtd o, (1.6.6.2)



56 The Langevin Equation

O, (@)= 2T (EWE(W + 1)) cos ardt, (1.6.6.3)
where [25, 35]
@; (@)= Jim —&@. 7 = lim [ £ DE (@,7)]

is called the speciral density of the random function £(r). Equation (1.6.6.3)
can be rewritten (recalling that the ACF C, (1) is an even function of ) as

0, (0) = [ (£6)e@ +1)) e dr; (1.6.6.4)

that is, for a wide-sense stationary process, the spectral density is the Fourier
transform of the ACF. In addition, by the ergodic theorem, we will have [25]

Co(0) =(§(NE(W +0) = EVE( +1).

1.7. Application to the Langevin equation

To illustrate the use of the concepts developed in Section 1.6, we consider how
they may be used to evaluate the mean square value of the velocity from the
Langevin equation (1.3.1). This also will serve as an introduction to the
Ornstein—Uhlenbeck theory of Brownian movement [45] which is discussed in
detail in Chapter 3. We write the Langevin Eq. (1.3.1) as

#(t) = W(1), v(r)=—ﬁv(t>+;n1—F(t), a7

where S is the friction coefficient per unit mass. We seek solutions of Egs.
(1.7.1) with initial conditions that describe sharp values at =0 (corresponding
to delta function initial conditions in the associated Fokker—Planck equation).
These solutions are given by

i

W) =vpe ™ 4 [ OB, (172)
m 0

x(t)=x0+73— ) Lﬂ ! (1-e#") F(eyr, (1.7.3)

where we have assumed that the particle _started off at the sharp phase point
(%5, V). Taking averages, and noting that F(¢) =0, we use Eq. (1.7.2) to obtain
the mean and mean square velocities, viz.,

v(t) =v,e”, (1.7.4)
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V() =vie P +— j’ j e PHT RME (Y dr. (1.7.5)
m 5%
Using Eq. (1.5.8.3), we have

i [
@) =ie P reth X ([’ 5 (e~ 1")drar"
m 9%
=vie?? +e? —24’—’;’[1]. e’ dt’ = vie” +k—T(1—e"2’5’ ) (1.7.6)
m- oy m

Here we have used the properties of the Dirac delta function [21]

q .
[ f®s-aydi=f(a), p<a<gq. (1.7.7)
P
The variance is given by
ot =v()-(v()) =T (1-¢*")/m (1.7.8)
In the long-time limit, we have from Eq. (1.7.8)
limv? (1) = kT / m. (1.7.9)

Equation (1.7.9) is in complete agreement with the assumption that, for long
times, the Maxwellian distribution sets in [1, 5, 45].

Now the spectral density ®.(w) of the fluctuating force F(r) in the
Langevin equation, Eq. (1.7.1), 1s, according to the Wiener-Khinchin theorem,
given by

D, (0) = T ¢ F(O)F (r)dt = 2;ka ¢ 5(r) = 2D. (1.7.10)

(From now on, we shall follow the notation of Wang and Uhlenbeck [13] and
regard 2D as the spectral density; D is also used as a symbol for the diffusion
coefficient; however, the difference will be apparent from the context wherever
we speak of white noise.) Hence @,.(w) is independent of the angular
frequency @; F(f) is called a white noise force by analogy with white light,
where the spectral density is constant over the visible range of frequencies. If
®, (@) depends on w, then F(t) is called a colored noise force.

Nyquist’s theorem, Eq. (1.4.23), [34] may be proved using the above results
by considering the Langevin equation for the series LR circuit:

L—%i(r)+£i(r):e(t), | (1.7.11)
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where L is the inductance, R is the resistance, i(?) is the current, and e (7) is the
random e.m.f, with

e(t)=0, et)e(t,)=2D5(, ~1,), (1.7.12)
where D = RET. By replacing ¢'by R in Eq. (1.7.10), we have
D, (w)=2D =2RkT (1.7.13)

as the spectral density of the noise voltage. We emphasize [25] that pure white
noise cannot actually exist, since the power dissipated in R in a frequency range
(o, @) is '

a)Z
R j D, (w)do =2kT(w, — o),
@

which is infinite if we extend the integral to all frequencies. In practice, both
quantum and memory effects will come into play, limiting the “flatness”
property of the spectrum. Although pure white noise does not occur [25] as a
physically realizable process, it is of fundamental importance as an idealization
of many real physical processes leading, inter alia, to the Stratonovich and Itd
calculi (see Chapter 2, Section 2.3), which play such an important role in the
interpretation of the Langevin equation. We shall consider neither quantum nor
memory effects in the present work.

The process described by the Langevin equation (1.7.1) with a &correlated
fluctuating force F(f) is a Markov process [21], because the solution of the
first-order equation (1.7.1) is uniquely determined by its initial conditions.
Hence the conditional probability of the process at time ¢, depends only on the
value x (t,_,). The &correlated force F (7) at time 7<1t,_; cannot change the
conditional probability at time ¢> #,_,. The Markov property ceases to be valid
if F(f) is no longer 5-correlated. :

1.8. Wiener process

We now consider the special type of stochastic process known as the Wiener
process [1], which was introduced by Wiener in 1923 [55] to provide a rigorous
mathematical description of the statistical properties of the trajectory of a
Brownian particle. The fundamental properties of the Wiener process are set out
in this section.

Let £(t)=X(t) which, for the purpose of illustration, denotes the
displacement after a time ¢ of a particle undergoing Brownian motion, so that
X (0) =0 by definition. Consider a time interval (s, ©) which is long compared
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with the time between impacts on the Brownian particle by the particles in the
surrounding medium. In other words, the Brownian particle has been
“drummed” during (s, /). We make the following assumptions:

(1) The displacement [X (1) — X (s )] of the Brownian particle over the time
interval (s, ¢ ) is the sum

PIRE (AEP. ()]

of the infinitesimal displacements X (7,)—X(7,_,) of the Brownian
particle caused by the impacts of the particles of the surrounding
medium.

(2) The PDF of X(¢) depends only on X(#,,) and not on X(7,_,),
X(t,_,), etc., so that we have a Markov process, whence

[X(@)-X(®)], [X(6)- X)), - [XO) - X(,)]

are independent random variables. Formally, we say that the process has
independent increments.

(3) (X))~ X())=(X)-X(1,_))=0.

(4) Since [X (#) — X (s5)] is the sum of a large number of independent random
variables [X (t) — X (t-1)], each having arbitrary distributions, it follows
from the central limit theorem that [X (f)—X(s)]/ Var [X (t)—X(s)]
approaches a Gaussian distribution as n— 0. In other words, the
characteristic function of [X (1) = X (s)] is exp{—«’Var[X (1) X ()] /2}.

Formally, we say that a stochastic process consisting of a family of random
variables {X (), =0} is a Wiener process if (i) {X(£), r=0} has stationary
independent increments; (ii) X (¢) is normally distributed for r=0; (iii) (X (1)) =0
for 1=0; and (iv) X (0) =0.

1.8.1. Variance of the Wiener process

Assuming that Var [X ()] = f (), we have
i +6)=(6 +)) = (X0 +6) =X+ X (1) - X O ),

since X(0) = 0. On multiplying out, we have

el
&

S +t)= ([X (+1) = X)) > + ([X (t)-X(0)] ) (1.8.1.1)
since

(Xt +6)-XE)][X @)= X O)]) = (X (&, +1,) = X 1)) (X (1)~ X () =0,
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because X(, +4,)—X () and X(1)—X(0) are independent random variables
and (X(£)) =0. By stationarity, we may express Eq. (1.8.1.1) as

S+ =([X6) - XOT )+([X0) - XOT ) = 16,)+ 7).
Let t=1¢, t; =—s; then f(t—s)= f(t)+ J(=s) and the only function which
satisfies this functional equation is
fE—s)=c(t—s), (1.8.1.2)
where ¢ is a constant to be determined. By stationarity,
Var [X (£) - X (s)] = Var [X (t ~ ) - X(0)]=Var[X(t—s5)]

since X (0) = 0; so that from Eq. (1.8.1.2)

Var[X(1)-X(s)]=c" |t~s| (1.8.1.3)

in order to ensure a positive variance. Therefore, X(f)— X (s) is a Gaussian
random variable with PDF

[C (2z|t-s5])" :l_l e IXO-XG)T [ei-sp.

Now, we wish to evaluate the covariance K (s, #) given by
K(s,1)=Cov{X(s), X (1)) = <[X(S) ~ (X&) ][Xx® - (X(z))]).
Since (X (s)— X (1)) =0, we have

K(s,0)= (X ()X (1) = (X [X ()= X ()]} + (X)) = (X (s))
as X(s) and X(¢)— X(s) are independent. Therefore
K(s,1) =(X?(5)) = Var [ X(s)] = ¢* mins, ), (1.8.1.4)

where “min” denotes the minimum of s and ¢. On comparison with Eq. (1.3.14),
and since we have chosen X(f) as the displacement, it is obvious that
c® =2kT/¢ here.

We now consider the differences £(A) of the Wiener process; these will
allow us to evaluate integrals involving that process. Thus, the random variable
X(7) above is replaced by the symbol B(?), and we shall no longer necessarily
suppose that B(¢) represents the displacement of a Brownian particle, so that
the constant ¢* will alter. For example, the white noise force F (#) in the
Langevin equation is usually written as F(z2) = mB(f) (strictly speaking, this is a
meaningless equation, as B(f) is not differentiable), so that

(F(0)F(1))=m*(B(1)B(r,))=2kT¢6 (1, ~1,).
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F@)
B(r)

Figure 1.8.1. A crude picture of realizations of F (f) and of B(f) = j F(dr'.
0

Hence ¢* becomes ¢ =2kT¢ /m*. We also remark that the Wiener process
B(t) is itself not stationary, since B(0)=0; however, the increment
B(z + At)—B(t) is stationary, therefore, dB(f) and so B(f) are stationary
processes [40]. Furthermore, the white noise force F(z) used by Langevin is
related to B(t) by the integral [21]

B(1) =jF(z')dt', (1.8.1.5)

so that the Wiener process smoothes the white noise process (see Fig. 1.8.1).

1.8.2. Wiener integrals
We consider two overlapping time intervals A=[r,,7,] and A'=[¢/,1,] with
<t/ <t, <H

t t t !
—o-! o — o2 ~e-L

and
E(A)=[B(,)-B()], &(A)=[B(,)-B({)].

Multiplying these two equations together, and averaging using Eq. (1.8.1.4), we
have

(E(a)e(a)) =i -n|=c" [ana] (1.8.2.1)
and the special case |A = Al

(& (a))=c1Al. (1.8.2.2)
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We may interpret differentials such as dB(¢) in terms of & because

dB(1) = [£(t +di)— £()] = &(at), (1.8.2.3)
so that
[ rwaswo = | rwean, (1.8.2.4)

written as a Stieltjes integral [55] and termed a Wiener integral. Hence [1] even

though the sample paths (realizations) of the Wiener process are continuous with

probability 1, but not differentiable, integrals of the form of Eq. (1.8.2.4) can

still be defined for any square integrable f'since integration by parts is permitted.
We now wish to discuss in detail the Wiener integral

/1= | f@0éan. (1.8.2.5)

We take for f(¢) the step functions
0= 620 O+, O+ +c, 7, (1), (1.8.2.6)

where A, =1, —t and g, (¢) is the indicator function of the interval A; defined

as
o) = 1, if teA,
700, if rea,.

Thus
)= 20na[B6)-B()]=3" cé(a

We now define the Wiener integral &[ /] by
sli1=lim &7, ]. (1.8.2.7)

(It is sufficient to define the integral for the step functions, since we may
approximate any continuous function f(f) in the interval (oo, ©) by a series of
step functions [57]). Taking mean values, we have

(LD =lm(c[f,])=1im " c (£(a,))=0

Consider now

< > (Jf (dtj =<sz=lcicf§(A‘)é(Af)>
=CZZ IA NA, Icc =’ A
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Thus
(E17)=1m(214]) =] £ (1.82.8)
In like manner -
(lrlele]) =< j S(g@)ar. (1.8.2.9)

Equations (1.8.2.8) and (1.8.2.9) are very useful formulas, For further detailed
treatment, the reader is referred to the fundamental paper of Doob reprinted in
the anthology edited by Wax [4]. More mathematical details are given by Nelson
[1] and Doob [55]. The merit of the formulation of the theory in terms of the
Wiener integral is that it allows all the mathematical operations used in the
theory to be precisely defined. '

We are now equipped with the mathematical tools necessary for our
treatment of the theory of Brownian movement.

1.9. The Fokker—Planck equation

The Fokker—Planck equation is an equation for the evolution of the PDF (which
is defined on the phase space for the problem) of fluctuating macroscopic
variables [21]. It is essentially a specialized form of the Boltzmann integral
equation [13, 21] with the Stosszahlansatz of Brownian motion. The diffusion
equation, Eq. (1.4.8), for the PDF of an assembly of free Brownian particles is a
simple example of such an equation. The main use of the Fokker—Planck
equation is as an approximate description for any Markov process £ () in which
the individual jumps are small [49].

Consider a stochastic process &(f) in which we take a set of instants
t; < t, < t; where, for the present, we assume that y, and ¢, are fixed. We define
the conditional probability Ps(y,, t;] 1, #1) dy, as the probability that &£ (1) lies in
the interval (o, y2» + dy»), given that £(#) had a value y, at time f,, and
Ps(ys, tsly2, t; V1, )dys as the probability that £(#) lies in the interval
(v, y3 + dys), given that £(#;) had a value y, at time #; and £ () had a value y, at
time #,. If we multiply P, by P; and integrate with respect to y,, the resulting
PDF will only depend on y, and 4, i.e.,

B (y3t [ 30:t) = [ B (20t |90t B (Pt | pauty; 91 )y, (19.0)
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which is called the Chapman—Kolmogorov equation. If we restrict ourselves to a
Markov process, we will then have

B (3.1 | ¥0uty3s 308 =B (93,15 | 9351 ) (1.9.2)

and
B (ysoty [154) IP(yz,t 1908) By (3ot [ 3208y yy, (1.9.3)

which is the Chapman—Kolmogorov equation for a Markov process also known
as the Smoluchowski integral equation, essentially due to Einstein [3]. In Eq.
(1.9.3) we write P, =W, y,=y,y,=2,y,=x, t, =t,t, =t + At and suppress
the #; dependence so that, by comparison with Eq. (1.4.1),

W(y,t+8|x)= [ W(z,t| W (y,1+At| 2,0)dz. (1.9.4)

In Eq. (1.9.4), for economy of notation, we write W(y,1+At|z,t) = W(y,At|z)
so that

W(y Af|x)= T Wz, t| )W (y, At | 2)dz. (1.9.5)

We wish to derive a partial differential equation for the transition probability
W(y,t|x) from this integral equation under certain limiting conditions. We
have to consider

o P
J ROY=W (v, t1 00y, (1.9.6)
where R(y) is an arbitrary function satisfying
llm:r:? R(»)=0, and R"(y) existsat y= (1.9.7)
yorto

In Eq. (1.9.7), R")(y) is the n derivative of R(y) with respect to y. Using the
definition of the partial derivative, we have

jR(y)Edyz | R(y)i}-_%{W(y,t+At|x)——W(y,t]x)}dy

N (1.9.8)

By substituting the conditional probability W (y,t+Af|x) from Eq. (1 .9.5) into
Eq. (1 .9.8) and by interchanging the order of the limit and integration, we obtain

J’ R(y) == dy = lim— { j W(z,t|x) j R (y,At | z) dydz — j R(zW (z,t| x)dzil
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By expanding R(y) in a Taylor series about the point y = z so that
R()=R(2)+(y-2)R'(2)+(y—2)*R"(z)/ 21+---
(R'=dR/dz and (R"=d*R/dz"), we have

_[R(y)a—Wdy_hm _[W(zux)j{R(ZH(y R(2)
=2 )R(z)+ YW (y,At | z)dydz — | R(zW d 1.9.9
>, ¥, At | 2)dyds j @t xde | (199)

Since W(y,At|z) is a PDF, _[: W(y,At|z)dy =1 and therefore

jR( )Md _jW(zux)jhm— (y—2)R'(2)
+(y-2)* R (z)/2+--~}W(y,At]z)dydz (1.9.10)
or
a(z,A1) ., . a,(z,Af) o, |
jR(y) dy = jWM_w[ 2 R(2)+ L 2=k (z)+---]dz, (1.9.11)
where
a,(z,At)= T (y—z)' W(y, At | z)dy. (1.9.12)
. We now suppose that
_ (2, At
lim,, ,, %t)fﬂ for n>2;
see Eq. (1 .9.20) below. Thus
J’ R(y) dy J' W(z,t]x)[ DV (z,)R'(z)+ D® (z,)R"(2) ] dz, (1.9.13)
where
m al(z, At) ) i az(z A[) (19 ‘
DO(z,1)=lim o DP(z,1) = Ai;;b_———(zm) (1.9.14)

To form a PDE for W, we need to factor R(z) out of the right-hand side of Eq.
(1.9.13). To do this we use integration by parts. Thus, we have for the first term

T W(z,t| x)D® (z,0)R(z)dz = —T R(z)—(%[D“)(z, OW(z,t|x)]dz  (1.9.15)
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by Eq. (1.9.7). Similarly, applying integration by parts twice to the last term of
Eq. (1.9.13), we have

j W(z,t]| x)DP(z,0)R"(z)dz = j R(z) [D<2>(z O (z,t| x) |de. (1.9.16)
Substituting Eqgs. (1.9.15) and (1.9.16) into Eq. (1.9.13), we have
j R(y )(aW o —[D%w]- 22 [D(”W]de =0 (1.9.17)

(since z is a dummy variable). Thus we have the PDE

— 2
a—W=—£[D“)W:[+£2—[D(2’W]. ©(1.9.18)
ot Oy oy ‘

Equation (1.9.18) is the Fokker—Planck equation for a one-dimensional Markov
process governed by the random variable &£ (). D™ is called the drift coefficient
and D' the diffusion coefficient, which are to be calculated from the Langevin
equation. The condition that the Taylor series may be truncated at # = 2 can be
justified if the driving stimulus is Gaussian white noise in the accompanying
Langevin equation. This is apparent from the white noise properties of Eq.
(1.5.8.3) and Isserlis’s theorem, Eq. (1.3.5). For n=2, for example, Isserlis’s
theorem yields

F(t,)F(t,)F(,)F(1,) = AD? 8¢t ~1,)8(, —1,)
+8(t, —1,)6(1, —1,) +6(t, —1,)6(1, ~1,)}, (1.9.19)

which gives rise to a; of order (A7)? in Eq. (1.9.12). From Egs. (1.5.8.3) and
(1.3.5), we see that a,,a;,...,a,,,,, etc. are all zero and a,, ~(At)". Hence

lim 222 =0, > 1. (1.9.20)
A0 Af

However, if the driving stimulus is not Gaussian white noise, higher order terms
must be included in the Kramers—Moyal expansion, Eq. (1.9.11), and one no
longer has the Fokker-Planck equation. With Wang and Uhlenbeck [13], we
emphasize in relation to Eq. (1.9.18) that Egs. (1.9.14) are necessarily only
approximations. The basic equation is always Boltzmann’s equation [35, 36].
Since in general we will be dealing with the multivariable form of the
Fokker—Planck equation, it is necessary to quote the form of that equation for
many dimensions characterized by a set of vector valued random variables
{&=1{8,....,&,}. The multivariable form of the Fokker—Planck equation is with
W=W({y}t1{x}), {y} and {x} denoting a set of realizations of {£} [21]:
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%~_ i 1) v & D@ ‘ ‘
- = Zay,.[p" (y,t)W]+hZ’6)}aJ)[ Jy.0m ], (1.9.21)

k=70

where the drift and diffusion coefficients are

Ay, Ay, 5
D.”)—um—li, DP =1lim 22 (5. j=1,2,..,N).  (1.9.22)

! M0 Af Mam0 AL

We reiterate that we have assumed in writing down our Fokker—Planck
equation, referring to Eq. (1.9.18) for convenience, that D % 0, D® =0, and
D™ =0 for n>2. This allows us to truncate the Kramers—-Moyal expansion,
Eq. (1.9.11). In the Fokker—Planck equation, these quantities (expressing the fact
that, for small times At in the process, the only alteration in the random variable
£is due to the rapidly fluctuating Brownian force F(f), which is the central idea
underlying the theory of Brownian motion) are to be calculated from the
Langevin equation. The procedure emphasizes again that the Langevin equation
is the basic equation of the theory of Brownian movement. We remark that the
time At is of such short duration that (taking as example y the position and
momentum of a particle) the momentum does not significantly alter during the
time At, and neither does any external conservative force. Nevertheless, Af is
supposed to be sufficiently long for the chance that the rapidly fluctuating
stochastic force F(t) takes on a given value at time t+At to be independent of
the value which that force possessed at time t. In other words, the Brownian
force has no memory.

We shall now explicitly calculate the drift and diffusion coefficients in the
Fokker-Planck equation for the simplest one-dimensional model, which is as
follows. The Langevin equation for the process characterized by the one-
dimensional random variable £(¢), which describes, for example, the velocity of
a particle of mass m undergoing one-dimensional Brownian motion, is

E@)+PEW)=F )/ m. (1.9.23)
If we integrate this equation over a short time Az, we have the integral equation
with &(z+ Ar) being the solution of Eq. (1.9.23) which at time ¢ has the sharp
value y, so that

r+AL 1+Af

E(t+ A1)~ j BE(dL +— j F(tdt'". (1.9.24)

Thus (for a detailed exposition, see Section 1.10), taking the statistical average
of the realizations of £in a small time At, we have the drift coefficient DV :

D® (y,1)=lim[&(t+ Ar)— p(1))/ At =—Py. (1.9.25)
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In order to calculate the diffusion coefficient D'®, we square £(r+Ar)—y
to obtain
2 ! +Ar r+A7 1401
281py | F(t')a’t’+# [ [ F& F@harar
t ‘ !

!

[£(t+ 20— y] = B2y*(Ar) -

The first term on the right-hand side is of the order (Af)®. The middle term
vanishes because F' and the sharp initial value y are, by hypothesis, statistically
independent. The last term becomes, on averaging,

AL AL
2pkT j\' j S(t'—t"ydt'dt" = 2PkT
m

At, (1.9.26)

m t

where we have noted the property of the Dirac delta function Eq. (1.7.7). Hence
mlE+An -y _ piT
AHO 2At m

The third coefficient D (y,#) is calculated as follows. We form

D®(y,0) =

(1.9.27)

t+AL

[+ AD - y] = =75 (A1) +3)7 87 (Ar) i [ Feyar

H

=3y At [lI]‘F(z’)dt’J +(r+jtF(t’)dt') i
m m

t 4

The only term ~Af to contribute on averaging this equation, is the one involving
the triple integral. However, this will vanish for a white noise driving force
because, by Isserlis’s theorem, all odd values are zero. Thus

D®(y,0)=0.
Likewise, we can prove that all the D" (y,£)=0 for all n>3. Hence, the
transition probability W(y,t| y,,0) satisfies the Fokker-Planck equation

_F—,e—( W)+ 'BkT 522 (1.9.28)
Oy

corresponding to the Langevin equation (1.9.23). Since it is a transmtmn
probability, Wmust also satisfy

LW (y,t]y0,0) = (y = ¥,)
7 (3,11 70,0) = (), (1.9.29)

where W,(y) denotes the stationary solution.
We shall now discuss how drift and diffusion coefficients may be evaluated
in the most general case.
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1.10. Drift and diffusion coefficients

The drift and diffusion coefficients may be calculated from nonlinear Langevin
equations in the following way [21]. The most general Langevin equation in one
stochastic variable £ has the form [21]

() = h&E@), 11+ g[E (), 11F (@), (1.10.1)
If g is constant, Eq. (1.10.1) is called a Langevin equation with an additive noise
term, while if g depends on & Eq. (1.10.1) is called a Langevin equation with a
multiplicative noise term. We shall consider only the multiplicative noise case
since it is more general. We wish to evaluate [21]

T2 Af) — ]2
f(f"'-’lf) y] and D® = lim [c(t+AnN—y] . (1.10.2)
Az—m At At—0 2AL

D(l)

where £(f+At) is the solution of Eq. (1.10.1) which at time ¢ has a sharp value
y such that £(f) =y (Fig. 1.10.1).

Following [21], we write the Langevin equation (1.10.1) in the integral form
(see also Chapter 2)

t+At

£+ -y = f{h[é’(t') ]+ glE(), L1F (1)} i’ (1.10.3)

Now expanding 4 and g as Taylor series about the sharp point £=y and noting
that the increment during the interval (¢, /') is £(¢")—y, we obtain

R[E), ] =h(y. ) +[E) - y]%h( Yot )+, (1.10.4)

g[écz'),t']=g(y,z')+[é(ﬂ)—y]§yg(y,z')+---. (1.10.5)

Using these expansions in the integral equation, Eq. (1.10.3), we have

A

(") 7
g \\/"\'-‘\“»'\/
/\M~f\1\\h
"'\‘\/\f Y
t g
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+At t+AL

E(t+Ary -y = jh(y,t')de [£()- yja;h(y, )dt’
+j’ g(y, YF(dt + j HOE y]gg(y,t')F(t’)dt%m. (1.10.6)

We now iterate for &(#')— y in the integrand using Eq. (1.10.3) to obtain

f+ AL 1+Ai

é(t+At)—y—_[ (y.)dt' + j ——%—jh (,¢")dt'ds"

I+A!ah ,t
+j (y )j (y,t")F (¢ drdr

1+Af f+Af

+J' (v,0)F(r)dr' + j ——-———agg’ )J' h(y, 0 (¢)dt"dr

_;]t ag(y: ')Jg(y’ t”)F(t”)F(f’)dt”dt' (1107)

;o
so that the last term involves a product of noises which will not then vanish on
averaging. Now, recalling the properties of the random force F(t), Eq.
(1.5.8.3), and the property of the Dirac delta function [21]

J 50 -y =2y, (110.8)

we have from Eq. (1.10.7) the averaged equation

f-+Af AL

S 5 .
Et+an—y= [ h(y,r)dr+2D | 5g(y,t’)_[g(y,t")§(t’—t”)dt”dt’+---

f ¢ t

=h(y,t+®,At)At+Dg(y,t+®2At)§g(y,t+ZA[)A;ﬁF..., (1.10.9)

where 0 <®;<1 and D =¢4T . Here we have also used Eq. (1.10.8) as well as
the mean value theorem. The other integrals in Eq. (1.10.7) have been ignored,
because they will either give a contribution of the form (A7)" for n =2 if there are
2n F’s and by Eq. (1.9.20) they will vanish, or if there are (2n + 1) F’s they will
vanish by Isserlis’s theorem. Thus, we obtain the drift coefficient

1+ At) -y og
DY (y.1 —41——-_ =h+D 1.10.10
(2) = lim =—= %" ( )
Equation (1.10.10) may also be considered as an evolution equation for the
sharp value y. This is always the basis for the Langevin equation approach: the
sharp initial condition corresponding to the delta function initial distribution in



Historical Background and Introductory Concepts 71

the Fokker-Planck equation. We emphasize that £(f) in Eq. (1.10.1) and y in Eq.
(1.10.10) have different meanings: £ (¥) is a stochastic variable while y=&(f) is a
sharp (definite) value at time £. We have distinguished the sharp values from the
stochastic variables by deleting the time argument. The last term in Eq. (1.10.10)
is known as the noise-induced drifi.

Similarly for the diffusion coefficient Dy, ¢ ), we have from Eq. (1.10.3)

1AL AL +46r AL

[+ A0 -y j j (&,0)h(&,1")drdr" +2j (&.0)dr [ g(&r)F(r)ar

1A A

+[ [ g(&) (&) F(e)F () arar. (1.10.11)

The first two terms of Eq. (1.10.11) will give contributions of the order (At )?
and will vanish according to Eq. (1.9.20). Thus

AL A

[E(t + Af) — ]—znj j g(&,1")8 (¢ —1")dr'dr" (1.10.12)

Therefore, we have for the diffusion coefficient

DOy, = Alm[g(t +Af) - y]z / (2A8) = Dg*(y,1). (1.10.13)

Having illustrated the one-dimensional problem, we shall now obtain the
drift and diffusion coefficients for the two-dimensional Fokker—Planck equation
in phase space for a free Brownian particle. This equation is, as we have seen,
often called the Kramers equation or Klein—Kramers equation [21]. In general,
the Fokker—Planck equation for a dynamical system, the motion of which in the
absence of a heat bath is governed by Hamilton’s equations with a separable and
additive Hamiltonian comprising the sum of the kinetic and potential energies, is
known as the Klein—Kramers equation.

We have seen in Section 1.7 that the Langevin equation for a free Brownian
particle may be represented by Eq. (1.7.1). The corresponding Fokker-Planck
equation for the PDF W in phase space with x=y,, v=y, in Eq. (1.9.21) is

a;:/ ;[D‘”W] [D‘”W]+ [Dﬁ’W]

+—[D§2§W:]+2 [ <2>W] (1.10.14)
Since x = y,, Ax = Ay, and proceeding as in Eq. (1.9.14), we have
D® =1lim Ay, /At=lim Ax/At=v. (1.10.15)

At—=0 Af—=0



72 The Langevin Equation

Now, the change in velocity in a small time Az is

t+AL
Av~ —fvAr+L [ Faa.
m

]

Thus, the drift coefficient D{" is

D(”—llm =By 1.10.16)
A0 A P ( )

Likewise, the diffusion coefficients Dy’ and D? are

(A v (Ar?
D® =lim (———=1mm — =), (1.10.17
H a0 2At arso  2AL ( )
AxAv | “YF@)
D3 =1lim ~——11m— VIAL+v | —241' =0 1.10.18
;«-»0 2Ar 240 g Y I ™m ( )

!

because F(r)=0. In order to evaluate DY) =lim,,_, (Av)* / (2Af), consider

¢ 1+A 1AL 1+ AL
Zﬂ"A [ F(e')dt' +i j [ FeyFearar.

(av) = g7 (Ar) -

(1.10.19)

The first term on the right-hand side of Eq. (1.10.19) is of order (A¢)’, the
second term vanishes on averaging, and

i+Ar 1+A1 AL 1AL
| FGYF@"drat" =2kTm [ [ 8" ~1"dr'di” = 2 pkTmAr,

I

whence the diffusion coefficient is D3 (x,v) = kT 8/ m. Thus, we obtain

(1.10.20)

w W _ g 00W) kTﬁZW
ot ox ov m v

which is the desired Fokker—Planck equation in phase space.

1.11. Solution of the one-dimensional Fokker-Planck equation

As an example of the solution of the Fokker-Planck equation, we consider the
Brownian motion of a free particle in velocity space only. The Langevin
equation for this problem is Eq. (1.7.1). The corresponding Fokker—Planck
equation for the transition probability W(v,¢|v,,0) in velocity space is Eq.
(1.9.28), which is a special case of Eq. (1.10.20), namely
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ow o, .
—=f— (V¥
ot P ov ( )
The easiest way to solve this equation is to construct the characteristic function.

On taking Fourier transforms, we have

+ﬂkT Foud 7 4
m ot

(1.11.1)

W(u,t)= [ Wt | v, 00e ™ dv, (1.11.2)
so that, on integrating by parts,
T 0 . oW
—(pvW)e™dv=—pfu——mH

© A2 _
.1[ 667 sz e dv=—-uW.
v

—0D

Hence, our original Fokker—Planck equation is transformed into the first-order
linear partial differential equation

6W+ﬁuaW=——'BkTu2W. (1.11.3)
ot ou m
We make a small digression here, and consider the general solution of the first-

order linear partial differential equation of the form

0z Oz
P(x,y,z2)—+0(x, y,z2)—=R(x, y,2).
Ox oy
This equation is satisfied by the function ¢ defined by the equation
¢(x, v, z)=0if[13]

P§£+Q@+R-a—¢:0. (1.11.4)
Ox oy 0z

To solve the equation, we form the subsidiary system
dx dy  dz
P(xs Y Z) Q'(J(’, s Z) R(x, _)P,Z)“

Here P =1, Q= Bu, and R =—(BkTu* / m)W. Hence, our subsidiary system is

dt  du aw

I Bu (BkTu I mW

with general solution

W (u,2) =¥ (ue™ ) ™0™, (1.11.5)
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where ¥ is an arbitrary function which is determined as follows. The initial
distribution of velocities has the form W (v, 0]v,,0)=6(v-v,) so that
W (u, 0) = exp(—iuv, ). On setting #=0 in Eq. (1.11. 5), we have

‘P(u) — e—mv“ +hT? (2m)

Hence
v KT gy
\}l(ue‘ﬁ’) —e ue Ey. €
and

e A0 (12

W(u,t)=e 2m

The above equation represents the characteristic function of a one-dimensional
Gaussian random variable having mean

(v(t)) =v,e (1.11.6)
[see Eqgs. (1.7.4) and (1.7.8)] and variance
ol = <[v(t) (@) ] > kT(] e™). (1.11.7)

(We showed in Section 1.7 how these results can be obtained directly from the
Langevin equation). Thus the conditional PDF (transition probability) of the
velocities in the (Ornstein-Uhlenbeck) process is

v’
20 (1.11.8)

1
e 2
oN27
with o and (v(?)) given by the two preceding equations. The stationary
solution is found by taking lim_,_ W, which by i 1nspection is

W(v,t | vﬂ,O)w =

_m’
e 2kT

27kT ’

which is independent of v,. Suppose that vo also has this distribution, then

Hm A (v,¢]v,,0) =

2
_mvy

2 2kT

" (s ) 2nkT
Thus by using P(4|B) P(B)=P (AN B), we have the joint PDF

ml"vz +v,;,2 ——2v9ve"5')

W (vy,v,1) = e e WA= (1.11.9)

27kTA1 -2

Since the process is stationary (i.e., the underlying mechanism does not depend
on when the process began), by shlftmg the time axis we can write
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v, =¥(t,), v=¥(t,), and 1?=|1£2 ——tll.

Thus, W is the fwo-dimensional Gaussian PDF
" m_ [V (0)-2v(a)vn) p ) ()]
W (), 7) = W e
27kT\1- p*(2)

which depends on the time only through the time difference = =it] —b,
p(r) = e is the correlation coefficient [25], which we shall obtain in Chapter
3 using the Wiener—Khinchin theorem and the Langevin equation. This
procedure may be also applied for many dimensions as in [13]. Note that the
same symbol W 1s used for the various probabilities for notational convenience,
the particular context being indicated by the arguments.

1.12. The Smoluchowski equation

We have remarked that the Smoluchowski equation is a special form of the
Fokker-Planck equation, first given by M. von Smoluchowski in 1906 [4, 5, 10],
which approximately describes the time evolution of the concentration of
Brownian particles if inertial effects are small. In particular, Smoluchowski
considered the Brownian movement of a particle under the influence of an
external force [5,21]. He showed that, if an external force K (x, ¢) acts on the
particle, then the PDF W{x, ¢) in configuration space satisfies the approximate
equation [5, 21] (see also Sections 1.2 and 1.9)

oW W 1
=D 2——~£KW. (1.12.1)
ot ox? kT ox

Equation (1.12.1) is a one-dimensional Smoluchowski equation, It is a
differential equation in configuration space, because W does not explicitly
depend on the velocity. The general form of the Smoluchowski equation for
Brownian motion under an external force K =—gradV is given by Eq. (1.2.6).
The Fokker—Planck equation (1.4.8) derived by Einstein (see Section 1.4) is
an example of the simplest form of the Smoluchowski equation for the PDF
W(x,t|0), viz.,
ow _,ow
ot o’
where for convenience we place the assembly of particles at the origin so that
xp = 0. In mathematical terms, our problem is to solve this equation subject to
the delta function initial condition W(x,0|0)=0(x). This is a way of stating

(—o0 < x < o0), (1.12.2)
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that all the particles of the ensemble were definitely at x=0 at =0 (sharp initial
condition). The solution of Eq. (1.12.2) subject to the delta function initial
condition is called the fundamental solution of the equation; mathematically
speaking this solution is the Green function of Eq. (1.12.2). The solution can be
obtained using Fourier transforms. On taking the Fourier transform of Eq.
(1.12.2) over the variable x, we have
ow -~

| Py Du*Ww, (1.12.3)

where W (u,1) is the characteristic function defined as

W (u,t) = [ W(x,t]0)e"dx, W (u,0)= [ 8(x)e™dx =1.

Hence
W(u,t) = e
and
W(x,t]0)= 1 ]o e Dt g gy, =-==-1—e'?'%. (1.12.4)
2 2 (4nDt)"?

The above equation is a one-dimensional Gaussian distribution with zero mean
and variance (note that W tends to zero as x tends to infinity, and to the delta
function as ¢ tends to zero), such that o* =2D [¢|. Thus

kT

(x*y=2D]|t}]= , (1.12.5)
3nna

where 77 is the viscosity of the suspension and a is the radius of the Brownian
grain, This result is the same as that obtained in 1908 by Langevin by simply
writing down the equation of motion of the Brownian particle and averaging it
directly as in Section 1.3.

Equation (1.12.2) also serves to define the Wiener process X(¢) with PDF
given by

‘ — 1 —[x)-x () 12t |t-s]) 1 L)

PEOAX )= ez

which is the fundamental solution of the diffusion equation (1.12.2) with
¢* =2kT /¢ and X=x in this case.

We shall now summarize the last fundamental result of the early
investigations of the theory of Brownian movement, namely the escape-rate
theory of Kramers [4, 21, 43], originally developed to explain the breaking of a
chemical bond under the influence of thermal agitation.
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1.13. Escape of particles over potential barriers: Kramers’ theory

The origin of modern reaction-rate theory which we must very briefly outline
before describing the Kramers theory, stems from the 1880s when Arrhenius
[44, 49, 50, 60, 61] proposed, from an analysis of experimental data, that the rate
coefficient in a chemical reaction should obey the law

AV

F=ve ¥, (1.13.1)

where AV denotes the threshold energy for activation and v, is a prefactor [44].
After very many developments, summarized in [50], this equation led to the
concept of chemical reactions as an assembly of particles situated at the bottom
of a potential well. Rare members of this assembly will have enough energy fo
escape over the potential hill, owing to the shuttling action of thermal agitation,
and will never return [50] (see Fig. 1.13.1), thus constituting a model of a
chemical reaction.

The escape over the potential barrier represents the breaking of a chemical
bond [50]. The Arrhenius law for the escape rate I" (reaction velocity in the case
of chemical reactions) of particles that are initially trapped in a potential well at
A, and that may subsequently, under the influence of thermal agitation, escape
over a high (>>kT) barrier of height AV at C and never return to A, may be
written using transition state theory (TST) [49, 50] as

AV

rm‘:%.«_f". (1.13.2)
27T
F(x)
C
l'\
AV
.
A X
B

Figure 1.13.1. Single-well potential function as the simplest example of escape over a
barrier. Particles are initially trapped in the well near the point 4 by a high potential
barrier at the point C. They are thermalized very rapidly in the well. Due to thermal
agitation, however, very few may attain enough energy to escape over the barrier
into region B, from which they never return (a sink of probability). The barrier C is
assumed to be sufficiently large so that the rate of escape of particles is very small.
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Here the subscript TST stands for transition state while the attempt frequency,
@y, is the angular frequency of a particle executing oscillatory motion (i.e.,
libration) at the bottom of a well. The barrier arises from the potential function
of some external force, which may be electrical, magnetic, gravitational, and so
on. The formula represents an attempt frequency times a Boltzmann factor,
which weights the escape from the well.

A very unsatisfactory feature of the Arrhenius formula is that it appears to
predict escape in the absence of coupling to a heat bath, in contradiction of the
fluctuation—dissipation theorem. This defect was remedied, and reaction rate
theory was firmly set in the framework of nonequilibrium statistical mechanics
by the pioneering work of Kramers [43]. In order to take into account
nonequilibrium effects in the barrier-crossing process which manifest themselves
as a frictional dependence (i.c., a coupling to the heat bath of the prefactor in the
TST formula) he chose, as a microscopic model of a chemical reaction, a
classical particle moving in a potential (see Fig. 1.13.1). The fact that a typical
particle is embedded in a heat bath is modeled by Brownian motion, In the
single-particle distribution function, this represents (essentially through a
dissipation parameter) all the remaining degrees of freedom of the system,
consisting of the selected particle and the heat bath, which is in perpetual
thermal equilibrium at temperature T. In Kramers’ model [43, 49], the particle
coordinate x represents the reaction coordinate (i.c., the distance between two
fragments of a dissociated molecule — a concept first introduced in 1936 by
Christiansen [44, 497). The value of this coordinate, x,, at the first minimum of
the potential represents the reaction state; the value xj, significantly over the
summit of the well at B (i.e., when the particle has crossed over the summit)
represents the product state, and the value x, at the saddle point, represents the
transition state. We remark that, in his calculations of 1940, Kramers [43, 44]
assumed that the particles are initially trapped in a well near the minimum of the
potential at the point 4. They then receive energy from the surroundings, and the
Maxwell-Boltzmann distribution is rapidly attained in the well. Over a long
period of time, however, rare particles gain energy in excess of the barrier height
AV. Kramers then assumed that these particles escape over the barrier C (so that
there is a perturbation of the Maxwell-Boltzmann distribution in the well) and
reach a minimum at B, which is of lower energy than 4, and once there, never
return. We list the assumptions of Kramers: '

(1) The particles are initially trapped in 4 (which is a source of probability).
(2) The barrier heights are very large compared with k7.
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(3) In the well, the number of particles with energy between FE and

E +dFE is proportional to

e EIGT) dE;
that is, a Maxwell-Boltzmann distribution is attained extremely rapidly
in the well.

(4) Quantum effects are negligible.

(5) The escape of particles over the barrier is very slow (i.e., is a quasi-
stationary process) so that the disturbance to the Maxwell-Boltzmann
distribution (assumption 3) is almost negligible at all times.

(6) Once a particle escapes over the barrier it practically never returns (i.e.,
B is a sink of probability).

(7) A typical particle of the reacting system may be modeled by the theory
of Brownian motion, including the inertia of the particles.

It is worth mentioning here that assumption 5 above relics heavily on
assumption 2. If the barrier is too low, the particles escape too quickly to allow a
Boltzmann distribution to be set up in the well. If the barrier is high, on the other
hand, before many particles can escape, the Boltzmann distribution 1s set up. As
required by assumption 3, we therefore assume that the ratio AV /(kT), is at
least of the order, say, 5.

This model, which yields explicit formulas for the escape rate for very low
and intermediate-to-high dissipative coupling to the bath (thereby including
nonequilibrium effects in the TST formula), is ubiquitous in any physical system
in which there is noise-activated escape from a potential well. It has attained
importance in connection with fields as diverse as the diclectric relaxation of
nematic liquid crystals [62], the magnetic relaxation of fine ferromagnetic
particles [63], laser physics [64, 65], and Josephson junctions [21].

Kramers’ objective was to calculate the prefactor A in the escape rate, viz.

= AT™" = A L1 prarn (1.13.3)
2T

from a microscopic model of the chemical reaction. Now a microscopic model
of the reacting system incorporating dissipation (viz., an asscmbly of Brownian
particles in a potential well) is used to determine A. Thus A indicates that the
prefactor is closely associated both with the stochastic differential equation
underlying Brownian motion, i.e., the Langevin equation for the cvolution of the
random variables (position and momentum), and the associated probability
density diffusion equation describing the evolution of the density of the
realizations (phase points) of these random variables in phase space. This is the



80 The Langevin Equation

Fokker-Planck equation which, like the Boltzmann equation, is a closed
equation for the single-particle PDF.

By supposing that p~ 0 (quasi-stationarity) in the Klein-Kramers equation,
Eq. (1.5.9.6), Kramers discovered two asymptotic formulas for the rate of escape
from a well for a system governed by the Langevin equation. The first is the
intermediate-to-high damping (IHD) formula

D :( 1+ B _LJFTSTB (1.13.4)

4} 2w,

where @, is the characteristic frequency of the inverted oscillator
approximation to the potential ¥ (x ) in the vicinity of the barrier. In the IHD
formula, the correction A to the TST result in the prefactor of Eq. (1.13.3) is
essentially the positive eigenvalue (characterizing the unstable barrier-crossing
mode) of the Langevin equation, Eq. (1.5.8.1), omitting the noise, linearized
about the saddle point of the potential ¥ (x). In the case considered by Kramers,
this is a one-dimensional maximum. A further-discussion of this is given later.
Equation (1.13.4) formally holds [44], when the energy loss per cycle of the
motion of a particle librating in the well with energy equal to the barrier energy
Ec=AV, is much greater than kT. The energy loss per cycle of the motion of a
barrier-crossing particle is #S(E.), where E. is the energy contour through the
saddle point of the potential, and § is the action evaluated at E = E,.. This

below). The IHD asymptotic formula is derived by supposing that

(i) the barrier is so high and the dissipative coupling to the bath so strong
that a Maxwell-Boltzmann distribution always holds at the bottom of
the well; and

(ii) the Langevin equation may be linearized in the region very close to the
potential barrier, meaning that all the coefficients in the corresponding
Klein—Kramers equation are linear in the positions and velocities.

If these simplifications can be made, then the Klein-Kramers equation, although
it remains an equation in the two phase variables (x, p), may be integrated by
introducing an independent variable which is a linear combination of x and P so
that it becomes an ordinary differential equation in a single variable.

A particular case of the IHD formula, Eq. (1.13.4), is the very high damping
(VHD) limit, B/ (2@) >>1, where the escape rate from Eq. (1.13.4) becomes

B prst _ @, (1.13.5)

B 2rf

I—NHD —
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Figure 1.13.2. Diagram of damping regions for the prefactor A in Eq. (1.13.3). Three
regions exist, namely VLD, intermediate damping (ID) (TST), and VHD, and two
crossovers between them. Kramers® turnover refers to the under-damped region between
ID and VLD.

Here the quasi-stationary solution, £ =0, may be obtained in integral form by
quadratures, and the high-barrier limit of the solution (which is appropriate to
the escape rate) may be found by the method of steepest descents (sce Fig.
1.13.2). It is now unnecessary to linearize thc Langevin cquation about the
saddle point (here a one-dimensional maximum), as the solution may be
obtained by means of the Smoluchowski equation.

For small friction £ (such that BS(E.) << kT, however, the IHD formula
fails, predicting, just as with the TST formula, escape in the absence of coupling
barrier from the depths of the well are in thermal equilibrium (so that the
stationary solution applies) is violated (owing to the smallness of the dissipation
of energy to the bath). Thus, the spatial region of significant departurc from the
Maxwell-Boltzmann distribution in the well extends far beyond the region over
which the potential may sensibly be approximated by an inverted parabola.

Kramers showed how his second formula, valid in the very-low-damping
(VLD) case, where the energy loss per cycle BS(E.) of a librating particle is
very much less than kT, may be obtained by again reducing the Klein—-Kramers
equation to a partial differential equation in a single spatial variable (sce Section
1.5.12). This variable is the energy or, equivalently, the action. Here the encrgy
trajectories diffuse very slowly so that they do not differ significantly from thosc
of the undamped librational motion in a well with energy corresponding to the
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saddle energy AV or Ec. Thus, the only effect of escape is to produce a very
slow spiraling of the closed energy trajectorics towards the origin in the phase
space (x, p). He solved the VLD problem (see Section 1.5.12) by writing the
Klein—Kramers equation in angle-action (or angle—energy) variables (the angle
is the phase or instantaneous state of the system along an energy trajectory) and
taking a time average of the motion along a closed energy trajectory
infinitesimally close to the saddle energy trajectory. Thus, by dint of thermal
fluctuations, the (noisy) trajectory may become the separatrix or the open
trajectory on which the particle exits the well (see Fig. 1.13.2.1 below). Now the
average, being along a trajectory, is, of course, equivalent to an average over the
fast phase variable; hence a diffusion equation, Eq. (1.5.12.19), in the slow
energy (or action) variable emerges. Thus, once again, the time derivative of Yo,
(when p is written as a function of the energy using the averaging procedure
above) is exponentially small at the saddle point. Hence, the stationary solution
in the energy variable may be used. This procedure, which will shortly be
described in detail following the original approach of Kramers, yields the
Kramers’ VLD formula:

v _ BSER) prsr _ o, BS(E,) e_:_;.
kT 2r kT
This formula holds when in Eq. (1.13.3) A<<1, i, BS(E,) << kT; unlike the
TST result it vanishes when f#—0, so that escape is impossible without
coupling to the bath. Thus, in all cases, analytical formulas for the escape rate
rest on the fact that, in the relevant damping regimes, the Klein-Kramers
equation may be reduced to an equation in a single coordinate.

In summary, the VLD formula demonstrates that escape is impossible in the
absence of coupling to the bath. Likewise, if the coupling to the bath is very
large, the escape rate vanishes. Kramers made several estimates of the range of
validity of both IHD and VLD formulas and the intermediate (or moderate)
damping (ID) region where the TST, Eq. (1.13.2), holds with a high degree of
accuracy. He was, however, unable t0 give a formula in the under-damped
region between IHD and VLD, as there ABS(E.)~iT so that no small
perturbation parameter now exists. In essence, this problem, known as the
Kramers turnover, was solved neatly 50 years later by Mel’nikov [66] and
Mel'nikov and Meshkov [67], and elaborated upon by Grabert [68] and Pollak et
al. [69]. They constructed an integral equation for the evolution of the energy
distribution function which they solved using the Wiener-Hopf method
[44, 56, 70], and so obtained an escape-rate formula which is valid for all values
of the friction £ (see Section 1.13.7), Viz.,

(1.13.6)
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BSE) | o
=4 ————=T"", A3,
[ - : (1.13.7)
where
1 7 —A(AEHM)} dA ‘
AAy=exp|— | In|1-e —— 1.13.8
*) p(znl [ ,12+1/4] (1138

is called the depopulation factor (see further discussion in Section 1.13.7).

1.13.1. Escape rate in the THD limit

To calculate the reaction rate in the IHD limit, where the damping forces arc
strong enough to ensure equilibrium in the system (except for a small region
near the barrier top C, where the potential may be approximated by an inverted
harmonic oscillator potential), we note that the Langevin equation may, in this
limit, be linearized in the vicinity of the maximum of the potential at C. This
corresponds in the Klein—Kramers equation to coefficients linear in the
momentum and displacement and such an equation is a “linearized” Klein—
Kramers equation.

Just as for small viscosity, the process is governed by diffusion in a single
coordinate which is now a linear combination of the displacement and the
momentum rather than the energy. The appropriate diffusion equation is the
Klein—Kramers equation, Eq. (1.5.9.6), which we derived in Section 1.5.9.

We now assume that the function V is sufficiently well-behaved for it to be
expanded as a Taylor series about x¢ (the value of x where the top of the barrier
is located). Taking m = 1, we write

VaAV —ol(x—x.) /2, (1.13.1.1)

where the barrier height
AV =V(x.)=V(x,). (1.13.1.2)
Considering the situation as quasi-stationary, i.e., very slow diffusion over the

barrier, made possible by the condition AV >> kT, the Klein—Kramers equation,
Eq. (1.5.9.6), becomes the stationary equation

ep op 0 dp ) .
wrx =+ Y S + kT — =0, 1.13.1.3
X Po3 ﬁﬁp[pp GPJ ( )

where x'=x—x.. Substituting

p=g(x', p) g~ AV IRTY p=(p™ = 0ix ) I(24T) (1.13.1.4)
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into Eq. (1.13.1.3), we have

LY 2
mhﬂf p B ipp B _prf8 (1.13.1.5)
P

ox' op op°
Here g(x', p) is a crossover function, which varies rapidly near the barrier.

We see immediately that g=constant is a solution of Eq. (1.13.1.5).
However, this solution corresponds to thermal equilibrium, and hence to a
situation of no diffusion, i.e., the current of particles is zero over the top of the
barrier. This would yield, of course, the Maxwell-Boltzmann distribution. We
can obtain, however, the quasi-stationary solution if we assume that the
crossover function satisfies the condition

g =g(u), (1.13.1.6)

where u = p~ax’ and a is a constant. The solution must satisfy the following
conditions: (i) to the right of the barrier, the density must go to zero, because at
the beginning of the process, practically no particles have reached the sink B;
and (ii) near the source point 4, the Maxwell-Boltzmann distribution holds to a
high degree of accuracy. We include both of these conditions by imposing the
boundary conditions:

g —> 0 asx — oo (i.c., for x >>x¢) and g = const at x=x, =0, (1.13.1.7)
Equation (1.13.1.5) with Eq. (1.13.1.6) now leads to
dzg

[(@-pp-oix']} %

= 0. (1.13.1.8)

To solve this equation, we write the coefficient (a— 8)p —wlx' in terms of the
single variable u = p—ax" rather than x' and p. Thls can be achieved in a very
neat way if we write

(a—B)p~ewix'=(a=B)Np-ax')=(a— Pu,

which imposes on the constant a the condition:

ot =a(a—pB) or a=(BI2)+Ja? + B /4. (1.13.1.9)
If we ignore the minus sign in Eq. (1.13.1.9), then

a-f=—pl2+ak+fIa =2, (1.13.1.10)

will be positive, and Eq. (1.13.1.8) will therefore represent a diffusion of
particles over the barrier at C. The quantity 4, then corresponds to the unique
positive eigenvalue of the Langevin equation (1.5.8.1) linearized about C with
the noise term omitted, and characterizes the (unstable) barrier-crossing mode.



Historical Background and Introductory Concepts 85

Equation (1.13.1.8) now becomes a conventional ordinary differential equation
n u:

d'g dg .
kT —>-+(a~ fu—=0, 1.13.1.11)
h du? (@=5) du ( )
with solution
g(“): C'j e‘(”—ﬂ)u'zl(z,ﬁkr)du” (]13]]2)

where C' is a constant of integration and we have taken —co for the lower limit of
the integral in Eq. (1.13.1.12) corresponding to the boundary condition g — 0
as u — -0, 1e., g—0 for x>>x¢ or far to the right of the barrier top, i.c.,
outside the well. Now, in the region x = x,, that is, in the depths of the well far
to the left of the barrier top (x<<x.), we may extend the upper limit of
integration in Eq. (1.13.1.12) to +o to obtain

2nBkT
a—-p

-‘-e—a'xde':\/E- (1,13114)
—» 24

Thus, the PDF p(x, p) near A (the minimum of the potential) will be:

p(x,p)=C' /% e (7 KT (1.13.1.15)
a’ —_—

where the potential is approximated by ¥V (x) = @>x* /2 near the bottom of the
well (x=x, =0).

The number of particles passing the barrier top in unit time, i.e., the
probability current J, may be obtained [44] by integrating o p over p from ~oo to
+co (in this one-dimensional case, J strictly means the number of particles
crossing unit area in unit time; the calculation of the current from the current
density in more than one dimension is a complicated mathematical task [44]).
By putting x' =0 so that x=x¢ (i.e., the line of flow is through the saddle linc),
since pp is the current density, we obtain from Eqgs. (1.13.1.4) and (1.13.1.12)
using integration by parts

g(near x,) = g(w0)=C" , (1.13.1.13)

since

AV o

T T E L g ey - [27BKT
J=jp‘pdp=C€ jpe J.e ip'dp =C'kT e —

—o0
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while the number of particles n, trapped near the minimum A is, from Eqg.

(1.13.1.15),
) - o © _pz+cuf,:r2
n,=C' ,erﬁkTJ .fe 2T dpdx
a-pf L%

oLl /Z”ﬁkT. (1.13.1.16)
w, a-p '

The escape rate is therefore the number of particles crossing the saddle line in
unit time divided by the number in the well (total population), viz.,

' =J/n,, (1.13.1.17)

which, together with the eigenvalue Eq. (1.13.1.9), yields

oo P (Jmé+ﬁ2/4—ﬂ/2)e“"””‘”. (1.13.1.18)

27w,

If we now take the limit of the right-hand side of this equation, in the two cases
of large and small S, we find in the first instance (/3 >> 2w,) the VHD
equation, Eq. (1.13.5). The result embodied in Eq. (1.13.5) is, in effect, the non-
inertial limit, where the dissipation in the system is so large that the inertia of the
escaping particles has practically no effect (compare this to the original Einstein
theory of Brownian movement with the later inertia corrected version of
Uhlenbeck and Ornstein; see Chapter 3). In the second instance, i.e., the weak
damping limit (£ << 2e,), we obtain, from Eq. (1.13.1.18),

[ =m0 w24 oo (1.13.1.19)
p—0 27
which is the TST result, Eq. (1.13.2), predicting escape in the absence of
coupling to the bath, i.e., #— 0. However, regarding this limit as the solution
Jor very low damping is erroneous, as we shall now explain. This limit is, in
fact, the moderate or intermediate damping case.

We first remark that the IHD solution, Eq. (1.13.1.18), which we have
described relies [44] on the assumption that the friction is large enough to ensure
that the particles approaching the barrier from the depths of the well are in
thermal equilibrium. If the friction coefficient becomes too small, this condition
is violated, and the IHD solution is no longer valid because the space interval in
which the nonequilibrium behavior prevails exceeds that where an inverted
parabola approximation to the potential is valid. This is the origin of the need
for a different treatment for VI.D such that BS(E.) << kT, and for crossover
values of the friction, where BS(E,)= kT. Put in a simpler way, in the VLD
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case, the coupling to the bath is so weak that the assumption of a Maxwell-
Boltzmann distribution in x and p in a relatively large region extending almost to
the top of the barrier is not valid, because the damping is so small that the
motion of an escaping particle is almost that of a librating particle with energy
equal to the barrier energy and without dissipation.

1.13.2. Kramers’ calculation of the escape rate in the VLD limit

We now consider very low damping, i.e., energy controlled diffusion. We
follow, as closely as possible, the original reasoning and phraseology of
Kramers, using the energy-controlled diffusion equation of Section 1.5.12. As
usual, a stationary state of diffusion, i.e., /=0, with current density ./
corresponds to

_ op _ _sigry O EIKT)
J——,B(Sp+kTSéE]——ﬁkTSe EE—(pe ). (1320

because the continuity equation is in S (action) space p =-0J/0S. Integrating
with respect to E between two points 4 and B along the E (or S) coordinate
yields

J:ﬁle:peEl(kT) ];/J;S—IBE/(kT)dE‘ (1.13.2.2)

The density p is practically constant along lines of constant energy (since a
Boltzmann distribution is set up with p=p,e”*"), so E=const implies
p=const over a range of curves starting at A and extending to energy curves
that cut the x-axis, not at C itself but at some point D very close to C. This
restriction is necessary if the potential function has a smooth saddle point as the
frequency tends to zero as E tends to AV, so that the viscosity is no longer small
in the sense used in Section 1.5.12. (This restriction is unneccessary if the saddle
point is not a smooth function of the space variables.) Equation (1.13.2.2) may
be written as

pel‘?/(”‘)‘ — peE/(kT)
J = PkT e G )M. E/(W) )C‘ (1.13.2.3)
J‘.nemm‘ S € dE

We avoid integrating from the point 4 itself, because at this point E=5=0
and so the integral would diverge. We may take it that “near 4> means an energy
value of the order of the thermal energy kT, and so corresponds to points in
phase space, where p is still of the same order as at A itself, and where
practically all the particles are trapped. The condition that particles leaving at C
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practically never return to the well means, according to Kramers, that the
concentration [pe®*"’]. may be taken to be 0, and that the upper limit of the
integral may be taken to be the barrier energy at C. We write

E/(KT) ]

2, =lpe (1.13.2.4)

Thus, Eq. (1.13.2.3) becomes:

near A4 °

AV =1
J = KT p, U S“eE’”"T’dE] : (1.13.2.5)
kT

Now the main contribution to this integral comes from energies which differ
from the barrier energy AV by an amount of order of magnitude k7, so that we
may take § to have the value Sc corresponding to the noise-induced energy
trajectory through the saddle point C on which a particle may escape. Hence, the
integral in Eq. (1.13.2.5) governing the overbarrier current J now becomes

AV

J« S g . S(E. ) j DR Z KTS(E, Y D (1.13.2.6)

Here by integrating over £ from —o (i.e., deep in the well) to AV, we have
assumed the high-barrier limit. Thus the current J is

T~ fp,S(E,)e /6D (1.13.2.7)
Hence, since the number of particles trapped in the well near the bottom A is
n, = p, ZZfT , (1.13.2.8)
the escape rate I'V'? is given by
rvw =L g 3Ee) O ariury (1.13.2.9)

n, kT 27x

Kramers now roughly approximates the action of the almost periodic motion at
the saddle point by S, =27FE./®,, which is the action of a harmonic
oscillator of energy equal to the barrier energy and natural frequency @ [ (27)
[44, 71], so that Eq. (1.13.2.9) becomes

PAV —AV/(kT)

—e ] 13.2.10
T , (1.13.2.10)

which is Eq. (28) of Kramers [43]. Note the discrepancy between this equation

and the low-damping limit of the IHD equation, Eq. (1.13.1.18), i.e., Eq.

(1.13.1.19), which predicts escape in the absence of dissipative coupling. We

remark that Eq. (1.13.2.9) may also be written as

T ~
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Figure 1.13.2.1. Diagram of the critical energy curve and separatrix given by Matkowsky
et al. [72]. Here we show the critical energy curve (E = E) and the separatrix (g) in phase
space [44]. The critical energy, E, is the energy required by a particle to just escape the
well. When a particle reaches this energy, it may either escape from or remain in the well
with equal probability. The separatrix separates the bounded and unbounded motions. In
other words, when a particle reaches the separatrix it exits the well. The separation of
these curves (greatly exaggerated in the diagram) is infinitesimally small.

i - AE O avir (1.13.2.11)
kT 2m

where AE =S (EC ) << kT 1is the energy loss per cycle of the noisy motion at
the saddle point, and
S(E;)=¢_ pdx (1.13.2.12)

is the action of a particle librating in the well with energy equal to the saddle
point energy or critical energy.

We shall also need the escape rate I'™®" as rendered by the TST theory. That
result is easily obtained because, in TST, Boltzmann statistics hold everywhere,
unlike in the treatment of Kramers. Thus the probability of a jump (that is, of an
event occurring) is simply P =C'e™ " where C' is a constant. In using this
equation for reaction rates, the constant C' 1s written as @, /(27) so that,
according to TST, P=T"" =@, exp[-AV / (kT)]/(27). @,/(2x) is called
the attempt frequency. We now write Eq. (1.13.2.9) in the form given by

S(E
YLD :Mrm. (1.13.2.13)

We note that Hinggi et al. [50] re-derived the VLD equation, Eq. (1.13.2.9), by
calculating, in their Eq. (4.49), the mean first-passage time (Hinggi ef al. [50]
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use @, instead of @,). Essentially they used the mean first-passage time method
of Matkowsky ef al. [72], which is explained in detail in the context of magnetic
spins in [44]. In their notation, I'™" = 7(4)+ 27 4osep- Here 7(A4) is the time to go
from the well to the critical energy curve. The critical energy is the energy
required by a particle in order to escape the well; thus without any extra energy a
particle, on reaching the critical energy curve, may either remain in or escape
from the well with equal probability. Now 7, is the time required to go from
the critical energy curve to the separatrix. The separatrix is a curve whose
distance from the critical energy curve is infinitesimal, however, all particles
reaching the separatrix are assumed to be on their way out of the region 4 (Fig.
1.13.2.1). Note that 7, is regarded as negligible with respect to 7(4).

1.13.3. Range of validity of the IHD and VLD formulas

The THD escape rate T"'" given by Eq. (1.13.1.18) in the limit of vanishing
friction becomes the TST result, Eq. (1.13.2). This limiting behavior is,
however, inconsistent with the derivation of the IHD result in Eq. (1.13.1.18)
because, In the limit of vanishing friction, the variation of x is not the same as
the variation of . So the correct formula to use is Eq. (1.13.2.9), that is,

VD BS(E)a, AV IGT)
2xkT

In order for Eq. (1.13.3.1) to hold, B must be small compared with @,
(underdamping). If S =2w, , we have aperiodic damping, and we might expect
that there would be a p entn,ful supply of particles near point C, so that the escape
rate would be described by the IHD formula. Kramers [43], however, confesses
(see Fig. 1.13.2) that he was unable to extend Eq. (1.13.3.1) (the VLD result) to
values of S which were not small compared with 2@,, i.e., in the crossover
(turnover) region between VLD and THD and a fortiori to the entire under-
damped region.

The approximate formula for the escape rate in the VLD limit, Eq. (1.13.3.1),
is useful for obtaining a criterion in terms of the barrier height for the ranges of
friction in which the VLD and IHD Kramers formulas are valid. With the
harmonic oscillator action S, = 27AV / w > Eq. (1.13.3.1) is

(1.13.3.1)

r=rvw =ﬂ—:‘TKe'AV’“f”. (1.13.3.2)
If now we define a dimensionless friction parameter a=2nf/w,, Eq.
(1.13.3.2) becomes T'=aAVT™" /(kT) so that @AV is approximately the
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energy loss per cycle. Hence, the condition for the validity of the VLD equation,
Eg. (1.13.3.2), becomes aAV << kT, while one would expect the IHD formula,
Eq. (1.13.1.18), to be valid if aA¥V >>AiT. The damping region given by
aAV = kT defines the crossover region, where neither the VLD nor the IHD
formula is valid. This is called the Kramers turnover region and is the reason
behind the calculation of Mel’'nikov and Meshkov mentioned above. We shall
now give a physical interpretation of the three regions identified above.

We may summarize the results of our calculation. In the mechanical Kramers
problem pertaining to point particles and, by extension, to rigid bodies, which all
have separable and additive Hamiltonians, three regimes of damping appear:

(i) Intermediate-to-high damping: the general picture here [44] being that
inside the well the distribution function is almost the Maxwell-Boltzmann
distribution prevailing in the depths of the well. However, near the barrier it
deviates from that equilibrium distribution, owing to the slow draining of
particles across the barrier. The barrier region is so small that one may
approximate the potential in this region by an inverted parabola.

(i) Very low damping: here the damping is so small that the assumption in
(i), namely that the particles approaching the barrier region have the Maxwell-
Boltzmann distribution, completely ‘breaks down. Thus, the region where
deviations occur extends far beyond the region where the potential may be
approximated by an inverted parabola. Thus we may now, by transforming the
Klein—Kramers equation into energy and phase variables obtain the escape rate
(this is done by averaging over the phase and by supposing that the motion of a
particle attempting to cross the barrier is almost conserved, and is the librational
motion in the well of a particle with energy equal to the barrier energy). We
remark that the assumption of almost-conservative behavior (meaning that the
energy loss per cycle is almost negligible and is equal to the friction times the
action of the undamped motion at the barrier energy) ensures that the Liouville
term in the Klein—Kramers equation vanishes (unlike in IHD, where strong
coupling between the diffusion and the Liouville term exists). Thus, only the
diffusion term in the energy variable remains, the dependence on the phase
having been eliminated by averaging the distribution in energy—phase variables
along a closed trajectory of the energy, since we assume a librational motion in
the well.

(iii) An intermediate (crossover) friction region and, by extension, almost the
entire under-damped region, where neither the THD nor the VLD formula
applies. Thus, none of the above approaches can be used. In contrast to the VLD
case, the Liouville term in the Klein—Kramers equation does not vanish,
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meaning that one cannot average out the phase dependence of the distribution
function. This is ultimately taken account of by constructing, from the Klein—
Kramers equation, a diffusion equation for the PDF with the energy and action
as independent variables. This diffusion equation allows one to express the
calculation of the energy distribution function at a given action, as a Fredholm
integral equation which can be converted into one, or several, Wiener—Hopf
equations [44]. This procedure yields an integral equation, Eq. (1.13.8), for the
depopulation factor, the product of which, with the THD escape rate from Eq.
(1.13.7), provides an expression for the escape rate which is valid for all values
of the damping, so allowing the complete solution of Kramers’ problem. The
depopulation factor effectively allows for coupling between the Liouville term
and the dissipative term in the Klein—Kramers equation written in terms of
energy—action variables, which is ignored in the VLD limit.

The Kramers theory may be verified numerically for large potential barrier
heights by calculating the smallest non-vanishing eigenvalue of the Klein—
Kramers equation [44]. This procedure is possible because of the exponential
nature of the escape rate, so that, in effect, that eigenvalue is very much smaller
than all the higher-order eigenvalues, which pertain to the fast motion inside the
well. Thus the Kramers escape rate is approximately given by the smallest non-
vanishing eigenvalue if the barrier height is sufficiently large (>5k7). This
method has been extensively used to verify the Kramers theory, in particular the
application of that theory to magnetic relaxation of single-domain ferromagnetic
particles (see Section 1.18 below). We shall now briefly summarize the
extension of the Kramers theory to many dimensions, due to Langer [73].

1.13.4. Extension of Kramers’ theory to many dimensions in the IHD limit

We have seen that the original JHD treatment of Kramers pertained to a
mechanical system of one degree of freedom specified by the coordinate x with
additive Hamiltonian H = p* /2m+V (x). Thus, the motion is separable and
described by a 2D phase space with state variables (x, p). However, this is not
always so. For example, the motion of the magnetic moment in a single-domain
ferromagnetic particle is governed by a non-additive Hamiltonian, which is
simply the magnetocrystalline anisotropy energy of the particle, so that the
system is non-separable (see Section 1.17).

The phase-space trajectories in the Kramers problem of the under-damped
motion are approximately ellipses. The corresponding trajectories in the
magnetic problem are much more complicated because of the non-separable
form of the energy. Similar considerations hold in the extension of the Debye
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theory of dielectric relaxation (see Section 1.15) to include inertia, as in this case
one would usually (albeit with a separable Hamiltonian) have a six-dimensional
phase space corresponding to the orientations and angular momenta of the
rotator. These, and other considerations, suggest that the Kramers theory should
be extended to a multi-dimensional phase space.

Such generalizations, having been instigated by Brinkman [74], were further
developed by Landauer and Swanson [75]. However, the most complete
treatment is due to Langer in 1969 [73], who considered the THD limit. As
specific examples of the application of the theory, we shall apply it to the
Kramers THD limit, and to calculation of the magnetic relaxation time for a
single-domain ferromagnetic particle for an arbitrary non-axially symmetric
potential of the magnetocrystalline anisotropy in that limit (see Section 1.18.2).

Before proceeding, we remark that a number of other interesting applications
of the theory, which, as the reader will appreciate, is generally concerned with
the nature of metastable states and the rates at which these states decay, have
been mentioned by Langer [73] and we briefly summarize these. Examples are:

(1) A supersaturated vapor [76] which can be maintained in a metastable
state for a very long time but which will eventually undergo
condensation into the more stable liquid phase.

(2) A ferromagnet, which can persist with its magnetization pointing in a
direction opposite to that of an applied magnetic field.

(3) In metallurgy, an almost identical problem occurs in the study of alloys
whose components tend to separate on ageing or annealing.

(4) The final examples quoted by Langer are the theories of superfluidity
and superconductivity, where states of nonzero superflow are metastable
and so may undergo spontaneous transitions to states of lower current
and greater stability.

According to Langer [73], all the phase transitions above take place via the
nucleation and growth of some characteristic disturbance within the metastable
system. Condensation of the supersaturated vapor is initiated by the formation of
a sufficiently large droplet of the hiquid. If this droplet is big enough, it will be
more likely to grow than to dissipate, and will bring about condensation of the
entire sample. If the nucleating disturbance appears spontaneously as a
thermodynamic fluctuation it is said to be homogeneous. This is an intrinsic
thermodynamic property of the system and is the type of disturbance described
by Langer [73], which we shall summarize here. The other type of nucleation is
inhomogeneous nucleation, which occurs when the disturbance leading to the
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phase transition is caused by a foreign object, e.g., an irregularity in the walls of
the container or some agent that is not part of the system of direct interest.

The above examples have been chosen in order to illustrate the breadth of
applicability of the theory. In the present context, we remark that Langer’s
method, since it can in effect be applied to a system of multiple degrees of
freedom, is likely to be of much use in calculating relaxation times for fine
particle magnetic systems in which other types of interaction, such as exchange
and dipole—dipole coupling, also appear. We also emphasize that Langer’s
treatment of the homogeneous nucleation problem contains within it the
magnetic case of the Kramers’ IHD calculation which we shall treat in Section
1.18. The multi-dimensional Kramers problem was first solved in the VHD limit
by Brinkman [74] and Landauer and Swanson [75]; see also [44]. We should
also mention that Langer’s treatment is also, in effect, a generalization of a
calculation of Becker and Déring [76] of the rate of condensation of a
supersaturated vapor. A general discussion of this problem is given in Chapter 7
of Frenkel [77] on the kinetics of phase transitions.

1.13.5. Langer’s treatment of the IHD limit

For easy comparison with previous work, we shall adopt the notation of Ref.
[44]. Thus, we shall consider the Fokker—Planck equation for a multi-
dimensional random process governed by a state vector M=,y }
which is [50, 73]

a _ZN ZNi‘ OF 8 » |
o Pt =23 = [M [617,, TS Hp({n},z). (1.13.5.1)

In Eq. (1.13.5.1), E({n}) is a Hamiltonian (energy) function having two
minima at points 4 and B, separated by a saddle point C surrounded by two
wells. One well, say the one at B, is at a much lower energy than the other. The
particles have to traverse the saddle point, which acts as a barrier at C. We again
assume that the barrier height AV = E. — E, is very high (at least of the order of
5kT), so that the diffusion over the barrier is slow enough to ensure that a
Maxwell-Boltzmann distribution is established and maintained near 4 at all
times. The high barrier also assures that the contribution to the flux over the
saddle point will come mainly from a small region around C. The 2N state
variables {n} ={r,,7,,...,7,,} are parameters, which could equally well be the
coordinates and momenta of a point in phase space, or angular coordinates
describing the orientation of the magnetization vector of a single-domain
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ferromagnetic particle (see Section 1.18.2 below). Generally, however, the first
N of the 5;’s will be functions of the N coordinates of position [50] .

n=n(x;), i=12,...,N. (1.13.5.2)
The second N of the 7,’s will be the conjugate momenta z,, namely
Muw =7, 1=12,..,N. (1.13.5.3)

In fact, the 7’s will often (although not necessarily) be the coordinates
themselves, in which case (obviously) 7, =x,,i=12,...,N. Here, when the
noise term in the Langevin equation is ignored, the system evolves in
accordance with the deterministic equation

=—ZMW (1.13.5.4)
. 577,,
where M; are the matrix elements of the transport matrix M, which, for
simplicity, we shall assume to be constant. An example of such a system is the
translational Brownian motion of a particle in a potential in the IHD limit
considered in Section 1.13.6, Eq. (1.13.6.2). Another example is the
magnetization relaxation of a superparamagnetic particle (see Section 1.18.2).
We may define the matrices D and A by the equations

D:l(M+M{T) and A:l(M—MT), (1.13.5.5)

where M = (M) is the transport matrix resulting from Eq. (1.13.5.4), and the
symbol “T” means matrix transposition. Matrix D is called the diffusion matrix,
which characterizes the thermal fluctuations due to the heat bath, while matrix A
describes the motion in the absence of the bath, i.e., the inertial term in the case
of mechanical particles, and if D is not identically zero, then the dissipation of
energy satisfies [50]

= Z———D 9 co. (1.13.5.6)

»on, " on,
We consider, as before, a single well and suppose that, at finite temperatures, a
Maxwell-Boltzmann distribution is set up and the density at equilibrium is
E({n})

peq(m})=Ee T (1.13.5.7)

where

o0

© _E
7= [ “,J'e Tdp---dn,, (1.13.5.8)

—00
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is the partition function. The IHD escape rate for this multivariable problem may
again be calculated by the flux-over-population method.
We make the following assumptions about p({n}):

(1) It obeys the stationary Fokker—Planck equation (i.e., p =0), which is (on
linearization about the saddle point):

0 0
Zeom " [; e (70 =1 )+4T

Jp({n})=0, (1.13.5.9)
where the ey are the coefficients in the Taylor expansion of the energy about the
saddle point truncated at the second term, namely the quadratic (form)
approximation

() =Ec—> Y e, -7, ~7), (L135.10)

{n}={n°}, and E. is the value of the energy function at the saddle point
(compare Kramers’ method above: there the saddle point is a one-dimensional
maximum). Equation (1.13.5.10) constitutes the paraboloidal approximation to
the potential in the vicinity of the saddle point. For example, in magnetic
relaxation in a uniform field with uniaxial anisotropy, the energy surface in the
vicinity of the saddle point will be a hyperbolic paraboloid [78]. Equation
(1.13.5.9) is the multi-dimensional Fokker-Planck equation linearized in the
region of the saddle point.

(2) Owing to the high barrier, just as in the Kramers high-damping problem,
a Maxwell-Boltzmann distribution is set up in the vicinity of the bottom of the
well, i.e., at 4, so:

P = p, (M), {mp~{n'}. (1.13.5.11)

(3) Practically speaking, no particles have arrived at the far side of the saddie
point, so we have the sink boundary condition

p({m}) =0, {n} beyond {n°}. (1.13.5.12)

This is Kramers’ condition that only rare particles of the assembly ever cross
the barrier. Just as in the Klein—Kramers problem for one degree of freedom, we
make the substitution

p{n}) = g({n}) o, ({n}). (1.13.5.13)

(Again, the function g is known as the crossover function). Thus, we obtain from
Egs. (1.13.5.7) and (1.13.5.9), as before, an equation for g, namely
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5] a |
M, |- Y=k -2- 1O ormy) = o
Z y Zk:e,,k(m 7y ) kTan}an, g({m}) =0,  (1.13.5.14)

n 1

where {n} = {n°}. We postulate (see Section 1.13.1) that g may be written in
terms of a single variable u, viz.,

1, -
2xkT

g(u) = je_ﬂ?dz, (1.13.5.15)

and we assume that # has the form of the linear combination

u =ZU,.(77,. ~7°). (1.13.5.16)

This is Kramers’ method of forcing the multi-dimensional Fokker—Planck
equation into an equation in a single variable u (in his original case, a linear
combination of the two variables, position and velocity, so that u = p—ax’). We
must now determine the coefficients U, of the linear combination u of the 77,
This is accomplished as follows. We define the matrix M =-M". Then we
shall have the coefficients U, of the linear combination as a solution of the

eigenvalue problem
=y UM,e, =24U,. (1.13.5.17)

The eigenvalue A, is the deterministic growth rate of a small deviation from the
saddle point, and is the positive eigenvalue of the system matrix of the noiseless
Langevin equations, linearized about the saddle point. It characterizes the
unstable barrier-crossing mode. Thus, in order to calculate A, all that is
required is a knowledge of the energy landscape; Eq. (1.13.5.17) need not, in
practice, be involved. Equation (1.13.5.17) is obtained essentially by substituting
the linear combination u, i.e., Eq. (1.13.5.16), into Eq. (1.13.5.14) for the
crossover function, and requiring the resulting equation to be a proper ordinary
differential equation in the single variable u# with solution given by Eq.
(1.13.5.15) (the details of this are given in [44]). Equation (1.13.5.17) may also
be written in the matrix form

~U'ME® =2 U". (1.13.5.18)

(Hanggi er al. [50] describe this equation by stating that U" is a “left
eigenvector” of the matrix -ME€. The usual eigenvalue equation of an
arbitrary matrix A is AX=A4X In the above terminology, X would be a
“right eigenvector” of A). In Eq. (1.13.5.18), E€ =(g,) is the matrix of the
second derivatives of the potential evaluated at the saddle point, which is used in
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the Taylor expansion of the energy near the saddle point. The determinant of this
(Hessian) matrix is the Hessian itself. The normalization of U, is fixed, so that

A, =2 UMU (1.13.5.19)

n~ n?

which is equivalent to
> UeU, =-1. (1.13.5.20)

This condition ensures that the crossover function, Eq. (1.13.5.15), retains the
form of an error function and so may describe diffusion over a barrier.
Alternatively, one may say that the foregoing conditions require that the entry in
the diffusion matrix in the direction of flow (that is, the unstable direction) is
nonzero; that is, we have current over the barrier and so particles escape the
well,

Now the Fokker-Planck equation, Eq. (1.13.5.1), is a continuity equation for
the representative points, just as described earlier, so that

p+V-J=0, (1.13.5.21)
Thus by inspection, we find that the current density becomes
oE . 0
== M. | + kT — 1.13.5.22
J Z . (577,, o )p ( )

and we obtain, using Eqgs. (1.13.5.7), (1.13.5.14), and (1.13.5.15) for the
Stationary current density, i.e., p =0,

Jimy) = T%E;M'""U""’“‘ (e (1.13.5.23)

We now take advantage of the condition stated above, namely that the flux over
the barrier emanates from a small region around the saddle point C. We integrate
the current density over a plane containing the saddle point but not parallel to
the flow of particles. The plane u =0 will suffice here. Thus the total current is
J=> | j(fw)ds,. (1.13.5.24)
i y=0
Using Eq. (1.13.5.24) with the quadratic approximation of Eq. (1.13.5.10) for
the energy near the saddle point, the integration for the total flux (current) now
yields, after a long calculation [44],

dUe'U, det( : EC]

T

=172 Eg

e . (1.13525)

1
Jr——% UMU,
ZEZ%: A
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From Egs. (1.13.5.19) and (1.13.5.20), we immediately obtain

a1 _E
det((27kT)™ EC)| Ce (1.13.5.26)

e

2nZ

Now, we assume that the energy function near the bottom of the well 4 may
again be written in the quadratic approximation

E=EA%%Z.J% (n. = Y(m, -n7). (1.13.5.27)

and we write E* = f(a,j ) so that the number of particles in the well is [44]

n, = {det{Q@akT) AT 27, (1.13.5.28)

Now the escape rate I', by the usual flux-over-population method, is defined to
be I'=J/n,, and so from Egs. (1.13.5.26) and (1.13.5.28), in terms of the
unique positive eigenvalue A. of the set of noiseless Langevin equations
linearized about the saddle point, we have

_ A [ det{E"} S (1.13.5.29)
27 \{|det (] ’ |

which is Langer’s [73] expression in terms of the Hessians of the saddle and
well energies for the escape rate for a multi-dimensional process in the IHD
limit. The result again pertains to this limit because of our postulate that the
potential in the vicinity of the saddle point may be approximated by the first two
terms of its Taylor series. Thus, Eq. (1.13.5.29) fails for very small damping
corresponding to energy controlled diffusion, because the region of deviation
from the Maxwell-Boltzmann distribution prevailing in the depths of the well
extends far beyond the narrow region at the top of the barrier in which the
potential may be replaced by its quadratic approximation. In passing, we remark
that rate theory at weak friction is generally known as “unimolecular rate
theory” [50], the Kramers VLD limit treated earlier being an example of this.
For a general discussion see Ref. [50].

1.13.6. Kramers’ formula as a special case of Langer’s formula

As an example of Langer’s method, we shall use it to derive the ITHD result of
Kramers. To recover the Kramers formula, Eq. (1.13.4), by Langer’s method, we
take N = 1; thus the state variables are the position and momentum, so that

mh=x, m,=p (11361}
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The noiseless Langevin equations are

. . av
i=L, p=—pp-2~, (1.13.6.2)
m dx

Here V denotes the potential energy and £ is the friction coefficient. Because
0F _p OFE dV

5; m’ o dv’
where E = p? / (2m)+V (x), BEqgs. (1.13.6.2) can be rewritten as
. OF . 0E OF
=L, 5 ——mpPE_OE (1.13.6.3)
on, on, o7,

Hence, we have the equation of motion in terms of the state variables (1,,77,) of
the general case of Langer’s method above, as

j 0 -1)\(eE/o
[7.71}—( J[ / m], (1.13.6.4)
m L mp 5E/67;'2
where the transport matrix M is
0 -1
M:(M,.j.):( ] (1.13.6.5)
1 mpg

Here we can take the saddle point C as the origin, so 7° =0 and E. =0. The
momentum of a particle just escaping is zero also, so 7S =0. Equation
(1.13.5.10) then yields the energy in the vicinity of the saddle point

1
Ezwén—?-ménf +—n2. (1.13.6.6)
2 2Zm

We now determine A.. From Egs. (1.13.6.4) and (1.13.6.6), we have the
linearized noiseless Langevin equation:

(B
n,) \=1 -mBJ\eE/dn, ) \-1 -mp)\ n,/m
(0 1/m\(n
—(mwé _ﬂJ(WzJ

1 y
1= An, A:( 02 /mJ (1.13.6.7)
ma, —f .

or

with secular equation
det(A~AI)=0. (1.13.6.8)



Historical Background and Introductory Concepts 101

We thus solve the secular equation, namely
AA+P) -} =0,
to find

‘2
4, =+ w§,+"i—ﬁ. (1.13.6.9)

We pick the upper sign so that the solution (which is now always positive)
corresponds to the unstable barrier-crossing mode, hence

2
A, = a2+l L 1.13.6.10
\’c D) ( )

Now the Hessian matrices of the saddle and well energies are given by

EC - me; 0 ond B = ma’ 0 .
0 -1/ m 0 1/m

Thus, the Hessians are given by
det{E} =—w’ and det{E’} =],

det{E'} @,
det ()] @

The escape rate is given by Eq. (1.13.5.29), which now becomes
Ao, B v
L =3’A( 1+L—L]e T (1136.11)

and so

270, 2r 40} 2e,

Equation (1.13.6.11) is Kramers’ IHD equation, Eq. (1.13.4). We will return to

various applications of the theory of Brownian motion in a potential, and of the
Kramers theory, are summarized in Section 1.14.

1.13.7. Kramers’ turnover problem

We have briefly mentioned that the VLD equation, Eq. (1.13.6), is of particular
significance in that it clearly demonstrates that escape is impossible in the
absence of coupling to the bath. Similarly, if the coupling to the bath is very
large, the escape rate becomes zero. In his original paper, Kramers made several
estimates of the range of validity of both IHD and VLD formulas and the region
in which the TST theory, embodied in Eq. (1.13.2), holds with a high degree of
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accuracy. He was, however, unable to give a formula in the Kramers turnover
region between THD and VLD, as there BS(E)=kT so that no small
perturbation parameter now exists. Here the coupling between the Liouville and
dissipative terms in the Klein-Kramers equation enters, so that one may no
longer ignore the Liouville term as was done in the very-low-damping regime.
This problem, named the Kramers turnover, was solved nearly 50 years later by
Mel'nikov and Meshkov [66, 67]. They constructed an integral equation for the
cvolution of the energy distribution function in the vicinity of the separatrix,
which they solved using the Wiener—-Hopf method [66, 70] and so obtained a
simple integral formula for the escape rate I' bridging the VLD and IHD
solutions. Now both the IHD and VLD rates, already derived using two
completely different approaches, are invalid in the Kramers turnover region, and
in almost the entire under-damped regime AE =& = BS(E.)<kT between ID
(TST) and VLD. The nomenclature turnover or crossover follows because, in
IHD, the prefactor of the escape rate is inversely proportional to the damping /£,
while in VLD, where the coupling between the dissipative and conservative
terms in the Fokker-Planck equation is ignored, it is directly proportional to it
(see Fig. 1.13.2). Thus it is intuitively clear that the under-damped case requires
its own mathematical technique accounting for the coupling between these terms
[66, 67]. This was initiated by Iche and Noziéres [79] who showed that the
Klein—Kramers equation can then be reduced to an integral equation. However,
independently of them, Mel’nikov [66] (whose notation we shall follow as far as
possible) also proposed the reduction of that equation to an integral equation in
the energy variable, with a Gaussian kernel with sole parameter A = ¢/ kT, Thus
[67], just as in VLD, the under-damped Brownian particle moves in a potential
well in an almost deterministic way, being only slightly perturbed by the
stochastic forces. The total energy of the particle is again the most slowly
varying quantity, and we require only the unperturbed trajectory corresponding
to the absolute minimum energy needed to escape the well. We then consider
small perturbations of this undamped trajectory due to thermal fluctuations and
friction.

The solution of the Kramers problem was then described in detail [66, 67]
both for single- and double-well potentials (see Hinggi et al. [50] and Coffey et
-al. [44] for reviews). For a single isolated well, the escape rate T is given by

C~AT™T, (1.13.7.1)

where the prefactor A is now given by

A=[J1+ 3/ (4a22) - B 2w )]AA), (1.13.7.2)
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A= pBS(E.)/ kT is the ratio of the energy loss per cycle to the thermal energy
of a librating particle with energy equal to the barrier energy, and A(A) is a
depopulation factor interpolating between the VLD and ID damping regimes
defined by Eq. (1.13.8). Thus the coupling to the heat bath is absorbed into the
two factors in A, while T™" pertains to equilibrium properties of the system
and does not require knowledge of the dynamics. Here the depopulation factor
A(A) effectively allows for the coupling between the Liouville and dissipative
terms, which is ignored in the VLD limit. In the VLD limit, A <<1, A(A)—= A
and so we regain the VLD escape rate while in the IHD limit A(A) — 1; thus we
ultimately regain the VHD escape rate using Eq. (1.13.7.1). For a double-well
potential with two non-equivalent wells, the escape rate I' is given by [67]

Fr[ 1+ ﬁz _ B JA(AI)A(AZ) (FlTST_I_FIST)’ (1.13.7.3)
4, 2w, | A(A| +A,)

where A, is the ratio of the energy loss per cycle to the thermal energy of a
librating particle having the barrier energy of well i, and I'>" are the respective
TST escape rates. -

Equations (1.13.7.1) and (1.13.7.3) represent a complete solution of the
Kramers turnover problem for a single and a double well, respectively.
Everywhere they rely on the facts: (i) that one may rewrite the under-damped
Klein—Kramers equation as a diffusion equation with the energy and action as
independent variables, and (ii) that the Green function is Gaussian. The energy
distribution function for particles at various positions in a potential well can then
be found in integral form by superposition. When complemented by boundary
conditions, these integral relations can be converted into an integral equation for
the energy distribution function for (potentially) escaping particles librating in a
well at the barrier energy. The resulting one-sided convolution equation with a
Gaussian kernel is solved by the Wiener-Hopf method [56, 70], which leads to
an explicit expression for the escape rate in the under-damped case. Moreover,
the precise shape of the potential well only enters the result via A, which also
governs the average emergy of the escaping particles. It is then postulated

by simply taking the product of the depopulation factor and the Kramers
[HD result. We remark that, subsequently, Grabert [68] and Pollak er al. [69]
have presented a more rigorous solution of the Kramers turnover problem,
showing that Eq. (1.13.7.1) can be obtained without the ad hoc interpolation

between the VLD and ID regimes postulated by Mel’nikov and Meshkov [67].
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E |Fx)

A

Figure 1.13.7.1 Escape from a single well.

Here we shall indicate briefly how Eq. (1.13.7.1) may be derived and we
shall demonstrate how the VLD result follows naturally from it. Thus we shall
first describe how the quasi-stationary Klein-Kramers equation, Eq. (1.5.9.6),
ie., with p =0, may for weak damping be transformed into an energy/action
diffusion equation.

We again consider the simplest example of the metastable state, i.e., when
Brownian particles, having escaped over the barrier, never return. The
corresponding single-well potential ¥(x) is shown in Fig. 1.13.7.1. We choose
the zero of the potential to be the barrier top (so that E. corresponds to E = 0),
and as before the depth of the well is AV >> kT, while the boundary condition
lim_,, p(p,x,t)=0 states that, initially, no particles exist at the far side of the
barrier (cf. Fig. 1.13.7.1). Furthermore, the current of particles

J=m"{ pp(x, p,t)dp (1.13.7.4)
[}

calculated near the barrier top does not depend on x, provided that  (x)| <<
AV. As before, the conservation of the total number of particles of the
ensemble (continuity equation) N =-J yields the connection between the
lifetime 7=I" of a particle in the well and the current. Normalizing the
distribution o to one particle in the well, we have

r'=J,- (1.13.7.5)

which we shall use to calculate I'. In accordance with Kramers, we shall assume
that the flux over the barrier is due only to those particles having energy E in the
neighborhood of the barrier top (the separatrix region) with IE l <kT. Moreover
AV >> kT, and the friction-induced energy loss per cycle § <kT. Hence, just
as in VLD, the total energy E = p’ /(2m)+V(x) of a particle moving in the
well is the most slowly varying quantity, so we use that as a new variable in the
Klein—Kramers equation, instead of the momentum, while retaining the
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(relatively fast) position x which will later be subsumed in an action variable.
Here the relevant quantity is the quasi-stationary energy distribution function
f(E) of particles with a possibility of escaping, because the decay rate ' =7"'
by the flux-over-population method is

I=J= ]0 F(E)dE. (1.13.7.6)

Equation (1.13.7.6) follows from Egs. (1.13.7.5) and (1.13.7.4) for th¢ number
of particles crossing the barrier in unit time, the fact that dE = pdp /m, and that
in order for a particle to escape its momentum must be positive. Mel’nikov's
method [66] of calculation of f(E) and T'=7"" is as follows.

Green function of the energy/action diffusion equation

Mel’nikov’s procedure [66] for the evaluation of f(E), unlike that used by
Kramers in the VLD limit, requires one to treat right- and left-going particles
with respect to the barrier, denoted by the suffixes R, L separately. First, we note
that the quasi-stationary equation

op op

may be represented in terms of position—energy coordinates {x,E} using the
transformations

G G
> fer (5 P) =2 2[E-V(0)]/m = Jra (5 E), (1 13.7.8)

dV
%fR,L(x,p) = JaL (G E)+ a fni (x, E), (1.13.7.9)

where we define the distribution functions for the righta and left-going particles
as

fu= p(x, J2m[E- V("f)])’

( \/2m ~V(x) )
Furthermore, we can set £ =0 in the relationship
p(x,E)= i\/Zm [E-V(x)] = p(x,0) = +/-2m V(x) (1.13.7.10)

because we have chosen the separatrix trajectory to coincide with £=0 (sce
Fig. 1.13.7.1) and we suppose that the leading contributions to the escape stem
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only from particles in a narrow range of energy of order k7. Consider now the
dissipative term in Eq. (1.13.7.7), namely

d Bp’(x,0) 8
ﬁﬁp [pP+MkT ap]

op
kTP (113711
m aE{p CE‘E} ( )

where we have used Eq. (1.13.7.10). Thus the quasi-stationary equation, Eq.
(1.13.7.7), becomes

o _dVop_P 0)—(p+kTap] (1.13.7.12)
m 0E

or, in terms of fi, (x, E),

L sp v 2 e Le] anan

oF

Now we define the action S(E) pertaining to librational motion in the well via

§=i\/2m [E—V(x)] = +J-2mV (x), (1.13.7.14)

recalling that inside the well V(x) is negative. Hence Eq. (1.13.7.12) can be
compactly represented as the energy/action diffusion equation

fRL

7 I
—,B (fm, L J, (1.13.7.15)
describing diffusion and uniform drift in energy space in the separatrix region
and so governing the noisy motion there.

The solution of Eq. (1.13.7.15) can be reduced to an integral equation using
the principle of superposition, by first determining the Green function
g(E,S|E",S)=g(E—~E',§-8") (the transition probability in energy space).
The Green function g is the solution of the equation

0
B_p9(, 7% (1.13.7.16)
oS 6E oE
subject to the initial condition g(E, Ol E',0)=6(E—E'); here we have dropped
the subscripts R,L, writing f, =g. Defining the characteristic function

£(4,8) of the change in energy per cycle E—E' in a narrow range kT near the
top of the barrier via

E(4,8) = [ g(E—E",8)e™ 5V g(E - EY), (1.13.7.17)
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we have, as in Section 1.12,

£(A,8) = g IS+ LPSIGD) (1.13.7.18)
which directly follows from the delta function initial condition. Furthermore,
B(A,8) = g ASHAHNIUT) (1.13.7.19)

sothatat A—i/2, g isreal, viz.,
g(A=1/2,8)= e PSiarum (1.13.7.20)

Clearly, Eq. (1.13.7.18) is the characteristic function of a Gaussian random
variable with variance ((E—E")*)—(E ~E"Y¥=28kTS and mean (E-E"Y=-05.
Thus, the Green function g is
1 _(E-&'+ps)’

———e T (1.13.7.21)
\47PkTS
By superposition, the solution of Eq. (1.13.7.16) for an arbitrary initial
distribution of energy f(E’,0) is then given by the convolution integral

g(E-E",8)=

f(E,8) = T f(E' 0)g(E-E",S)dE". (1.13.7.22)

Integral equation for the distribution function f(E)

In order to derive a closed integral equation for the distribution function, we
need additional information concerning ¥ (x) outside the barrier. Here, the
particles, having surmounted the barrier, never return to the well. By hypothesis,
in terms of the functions f;  (E,x), we have outside the well (i.c., for £ >0
since £ =0 defines the boundary of the well),

Ju(E,0)=0. (1.13.7.23)

Conversely, close to the barrier the flux of left-going particles is simply due to
right-going particles with E <0 reflected from the barrier, so that inside the
well (i.e., for £ <0),

FLLE, x(E)] = fL[E, x(E)]. (1.13.7.24)

Here x (E) is the root of the equation V(x)=E, x, <x<0 corresponding, of
course, to the right-hand turning point at a given energy E. Equations (1.1 3.7.23)
and (1.13.7.24) constitute boundary conditions because (a) they relate S to 1,
for E<0, (b) no left-going particles exist right at the barricr top. Clearly,
particles with different values of E are reflected at different values of x (E).
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However, for E ~ kT (the order of magnitude of a fluctuation), the variation in
the values of x(E) is small in size compared to the overall extent of the well. One
may therefore assume that all such particles propagate along (boundary layer)
trajectories very close to the separatrix E = E,. =0. Thus they can be described
by the Green function, Eq. (1.13.7.21), with § = 5(0) denoting the action of a
particle librating in the well with energy equal to the barrier energy, viz.,

0

S(0) = Lc —2mV (x)dx = 2( —2mV (x)dx, (1.13.7.25)
where E, now indicates that the line integral is to be taken along the separatrix
(which of course constitutes [71] an open trajectory rather than the closed
trajectories of the librational motion in the well). The action §(0) is the basic
parameter of the problem, and has already appeared in our discussion of the
VLD result. The justification that S(0) may be used can be given as follows. If
|E| << AV (details in [44]), we have

S(0)-S(E)=|E/w,|m|AV / E|,

where @, is the barrier frequency. This expression tends to zero in the limit of
small E.

We now return to the boundary conditions, Eqs. (1.13.7.23) and (1.13.7.24),
and introduce, following Mel’nikov [66], the new function

J(E)= [ (E,0), E>0, f(E)=fI[ExE)], E<0  (1.13.7.26)

with x(E) defined by the separatrix E=E_. =0. Clearly, f(E) governs the
escape rate for £ >0 and the rate of reflection at the barrier for £ < 0. Now the
reflected particles constitute a distribution of left-going particles f,. They flow
to the left-hand boundary of the well and are then reflected; thus f; becomes
f«- They then flow across the well once more and reproduce the distribution
S(E). This is the condition that must accompany the integral Eq. (1.13.7.22) in
evolution of the energy distribution function in the vicinity of the separatrix is
governed by the Green function

g(E—-E',S)=(4rkT5) " e (= +oV/k0) (1.13.7.27)

where & = £S(0) is the mean energy loss in one cycle (i.e., per oscillation) of
the librational motion in the well with energy equal to the barrier energy. We
can now write down our fundamental integral equation for the energy
distribution function f(E) of particles with a possibility of escaping, in the
form of the Wiener—Hopf equation [70]
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f(E)= MF g(E—E"f(E")dE", (1.13.7.28)

where g(E-E')=g(E—E',S). Note that, because the cxponential factor in
g(E—E’) decays so quickly, we suffer no great error in replacing the lower
limit, which should be E-AFV by -w. This is important: otherwisc the
problem could not be posed as a Wiener—Hopf equation. Furthermore, we have
the boundary condition that, deep in the well the distribution, f(Z£) must be the
Maxwell-Boltzmann distribution, i.e.,

F-H\l"

J(E)= [/ (E )—,Z i (1.13.7.29)

(here we have noted that E ~ ~AV + @’ (x—x,)* /2 near the bottom of the well
(x=x,). Solving Eq. (1.13.7.28) for f(F) yiclds, from Eq. (1.13.7.6), the
escape rate I, effectively reducing to the calculation of the depopulation factor
A[6/(kT)] expressing the fact that the density at the barrier is no longer zcro.

In order to evaluate A[J/(kT)], we consider the Fourier transforms ¢" (4)
and ¢ (4) defined (so that A is dimensionless) as

AV Mf

o () =27/ w,)e" j U(xE) f(E)e* dE, (1.13.7.30)

where U(x) 1s Heaviside’s theta or step function. The functions ¢' (1) and
@ (A), which are the Fourier transforms of f(FE) for E>0 and E <0, arc
analytic in the upper and lower complex half-planes of A, with the only
exception being the pole of ¢~ (A1) at A =—i. Using the boundary condition of a
Maxwell-Boltzmann distribution deep in the well, i.e., Eq. (1.13.7.29), one may
approximate ¢~ (1) for |4+ <<1 as

@ (A) = =1/ (A +1). (1.13.7.31)
Clearly,
T AV 2]T AV
P (0)——e‘TJ-f(E)dF=-——Te“ (1.13.7.32)
W, a,

while, by definition from Eq. (1.13.7.6), in the under-damped region where the
prefactor A = A, the escaperate I' is given by
AV

'~ Aw.e * /(27). (1.13.7.33)
On comparing Eqgs. (1.13.7.32) and (1.13.7.33), the prefactor A4 is
A=¢"(0), (1.13.7.34)
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which shows how the depopulation factor may be determined from the
characteristic function of the energy distribution in the upper half-plane.
Now, with Egs. (1.13.7.28) and (1.13.7.30), writing the Green function
explicitly and using the properties of Gaussian integrals, we have
_Al 0 o E E'+ﬁs)z ﬂ
0 D+ (W)= j [-LEL (E) 3 ot apap

\/4kTﬂs

) AV l(l+:)ﬂs 0 iAE'

= _a)iek:"e kT ;[ f(E')eFdE' :g(;{,) (p— (;{), (113735)’

where g(A) is given by Eq. (1.13.7.19).
In order to illustrate [66] how the Wiener—Hopf method [70] may be used to
determine A = ¢" (0), we rewrite Eq. (1.13.7.35) as

¢" () +G(e™ (1) =0, (1.13.7.36)

where G(A)=1-g(A). The solution of Eq. (1.13.7.36) may now be determined
in terms of G(A4), as follows. From Eq. (1.13.7.36) we have

In[-p" (4)] = In ¢~ (1)+1n G(A). (1.13737)

Next, using Cauchy’s integral formula, we define two functions InG* (1) and
InG™ (1) as
1 .. ]‘3 In G(4")

]ﬂG (/1) T lim A
A'—-AFie

da (1.13.7.38)
27T -0

The functions G*(A) and G~ (1) are entire functions which have no zeros in
the corresponding half-planes Im A >0 and ImA <0. Both G*(1) and G (1)
—1 as A —» o, and G(4) may be decomposed as

InGA)=InG"(A)+InG (1) (1.13.7.39)
or G(A)=G"(1)G™ (1), so Eq. (1.13.7.36) may be rewritten as
| In[-p* (1)/ G" ()] =In[p” (1)G (1)]. (1.13.7.40)

As the functions on both sides of Eq. (1.13.7.40) are analytic in the two different
half-planes of 1, both sides must be equal to an entire function, which can be
chosen to satisfy the boundary condition Eq. (1.13.7.31) and which may be
taken in the form In (A1), so that

@ () ==h(A)G* (1) and ¢ (A)=h(1)/ G (). (1.13.7.41)
Now from Eq. (1.13.7.31), we have
h(A) =—iG™ (=) / (A +1), (1.13.7.42)
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yielding, with Eqs. (1.13.7.41), the solution of the Wiener—Hopf cquation, Eq.
(1.13.7.36), viz.,

. iIG (A)G™ (—i) - iG™ (~i) |
A)=- d Ay —————— 1.13.7.43
T M e ey R
Thus the prefactor 4 =¢* (0) is given by
4=G" G (-)=|6" O (1.13.7.44)

since
G (-)=[G*(0)]

(the asterisk denotes the complex conjugate). This can be verified by
displacement of the contour of integration in Eq. (1.13.7.38) to the straight linc
Im A =—i/2. Thus, with the replacement A’ — 1 —i/2 in Eq. (1.13.7.38), we
have

| 2InG(T-i/2) _

nG*(0)=— [ ———241, (1.13.7.45)

27i A-il2

-0

where the shifted function
G(A-il2)=1-8(A—il2)
=1 _e—A‘(THM)
is real; see Eq. (1.13.7.20). Using Eq. (1.13.7.45), we obtain the depopulation

factor

@

i {1 exmf — 2L \
_LJ- In{l-exp{ *““,*””’gﬂz,“

G (0)f =e™~

A(A)= A . (1.13.7.46)

One can show that for small A (details in [44]) A(A)~A while for large A,
A(A) =1 so regaining the VLD and THD results, respectively.

Kramers’ VLD result
Before proceeding, it will be instructive to present onc morc method of
regaining the VLD result, Eq. (1.13.6). In the VLD limit, the integral equation,
Eq. (1.13.7.28), reduces to the differential equation [66]

00, (f+kT0,[)=0, O&<<iT, (1.13.7.47)

subject to the boundary condition j(0)=0. The reduction may be accomplished
by noting that the derivative 0, f satisfies the same integral equation, Eq.
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(1.13.7.28), as f(E) itself [80]. We now determine f(E) from Eq. (1.13.7.47)
and then use it to calculate the VLD escape rate. We have

f+kT8,f=C', (1.13.7.48)

where C' is a constant to be determined. Because, decp in the well, the
distribution is given by the Maxwell-Boltzmann distribution (1.13.7.29), the
complete solution of Eq. (1.13.7.48) is

@
E)=—2_ g Een | o 1.13.7.49
/(&) 27kl ( )
We now stipulate that the boundary condition at the top of the well is f(0) =0.
Thus C' = (@, / 27xkT)exp[—AV / (kT)], yielding

v By —~E/(kT) 1 _AVIKT) ‘
SB)=—— e 1]e . (1.13.7.50)
The condition that the density of particles vanishes at the top of the barrier is
tantamount (cf. [72]) to ignoring the time it takes to go from the critical or
barrier energy trajectory to the separatrix. Put more succinctly, the 50/50 chance
of the particle returning to the well is replaced, in VLD only, by zero chance of
returning. Thus, in VLD only, all the particles are absorbed at the barrier. This
condition of complete depopulation at the barrier is also used by Kramers when
he explicitly imposes (pe™'“"),
by Mel’'nikov [66] who, by calculating the average energy of the escaping
particles, deduced that '

= (. It must be justified rigorously, as shown

F(0) ~ 0, 5(kT) 2 ™7/

which is negligible only in the VLD case. Now, in order to get the VLD escape
rate from Eq. (1.13.7.47), we have to evaluate the current at the barrier J, which
is defined as '

fE+kTS0, f=—J. | (1.13.7.51)

Now, at the barrier top, £ =0, f(0)=0, sothat J=—kT60,f =T, since we
have normalized to one particle in the well. Thus, noting Eq. (1.13.7.50), we
have the Kramers VLD result, Eq. (1.13.6), which is perhaps a more convincing
derivation than that of Kramers.

1.14. Applications of the theory of Brownian movement in a potential
Amongst the physical phenomena to which the theory has been applied are:

(1) Current—voltage characteristics of the Josephson junction.
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(2) Mobility of superionic conductors.

(3) Dielectric and Kerr-effect relaxation in nematic liquid crystals.
(4) Line widths in nuclear magnetic resonance.

(5) Incoherent scattering of slow neutrons.

(6) Cycle slips in second-order phase-locked loops.

(7) Quantum noise in ring-laser gyroscopes.

(8) Thermalization of neutrons in a heavy gas moderator.

(9) Photoelectromotive force in semiconductors.

(10) Rate coefficient in chemical reactions.

(11) Line shape of single-mode semiconductor lasers.

(12) Dynamics of a charged density wave condensate.

(13) Dynamic light scattering.

(14) Superparamagnetism (magnetization relaxation of nanoparticles).
(15) Magnetic relaxation in ferrofluids.

(16) Polymer dynamics.

(17) Fluorescence depolarization.

(18) Thermal noise in electrical circuits.

(19) Diffusion magnetic resonance imaging, etc.

The applications listed under headings 2,4,5,8,9,and 11-13 arc
summarized in the review article [5] and in Risken’s book [21] in relation to the
Fokker-Planck equation for Brownian motion in a periodic potential.
Applications 1, 6 and 7 all rely on the same Langevin equations for Brownian
motion in a tilted periodic potential, which is described in the context of the
Josephson junction in Chapter 5 (see also [21]). Applications to laser
spectroscopy are described in Refs. [21], [64], and [65]. The rcader is also
referred to Gardiner’s Quantum Optics [81]. The various applications to radio
engineering are described by Stratonovich [48] and Engberg and Larsen [82].
Fluorescence depolarization of molecules in solutions is discussed by Lakowicz
[83]. The applications to polymer dynamics, dynamic light scattering, and
nuclear magnetic relaxation in liquids are described by Doi and Edwards [84],
Berne and Pecora [85], and McConnell [86], respectively. The application to
chemical reactions is the escape-rate theory [21, 43, 50, 60, 61] (sce also Section
1.13). The magnetization relaxation of single-domain ferromagnetic particles
[87, 88] and the Kramers escape-rate theory are closely interlinked, so we shall
summarize the application of the Kramers theory to superparamagnctism in
Section 1.18. The application of the theory to diclectric and Kerr-effect
relaxation in liquids and nematic liquid crystals is discussed in Chapters 3, 4, 7,
8, 10, and 11. One of the most interesting and useful applications of translational
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Brownian motion is to phase diffusion in magnetic resonance imaging [89] -
which we summarize in more detail in Chapters 3 and 12. Yet another modern
application is to stochastic resonance [90] which is illustrated in Section 1.21.
For the details of the applications to incoherent scattering and the lifetime of the
superconducting state in a Josephson junction, see Refs. [66], [91], and [92]).

The simplest example of rotational Brownian movement is the Debye theory
of dielectric relaxation [10, 32,59,77], which we shall summarize before
proceeding to our discussion of superparamagnetism.

1.15. Rotational Brownian motion: application to dielectric relaxation

The Debye theory of dielectric relaxation has, as its starting point, the Fokker—
Planck equation for rotational Brownian motion in the space of a sphere, when
the inertia of the sphere is neglected. A detailed derivation of this equation is
given by Debye [32]. However, we shall give here a derivation of his equation
based on the vector Euler-Langevin equation of Lewis ef al. [93]. This method
has the advantage that it can easily be extended to include the dipole—dipole
interaction between the polar molecules as well as crystalline anisotropy, the
latter of which is important in the application of the theory to nematic liquid
crystals [62, 94] (see Chapters 7 and 8).

We study the rotational Brownian movement of a spherical body, which is
presumed to be homogeneous, the motion being entirely due to random couples
that have no preferential direction. The sphere contains a rigid electric dipole .
Then the rate of change of u(¢) is

(1) = (1) x p(), (1.15.1)

where @(?) is the angular velocity of the body. We remark that Eq. (1.15.1) is a

purely kinematic relation with no particular reference either to the Brownian

movement or to the shape of the body. We make it specific to the Brownian
rotation of a sphere by supposing that @(¢) obeys the Euler-Langevin equation

Io(t) + co(t) = u(t) < E() + A7) (1.15.2)

In Eq. (1.15.2), I is the moment of inertia of the sphere, c® is the damping

torque due to Brownian movement, and A(f) is the white noise driving torque,

again due to Brownian movement so that A(¢) has the following properties:
A(0)=0, A(O)A () =2kTgo,6(t-1"), (1.15.3)

where the indices 7, j=1, 2, 3 in Kronecker’s delta &; correspond to the Cartesian
laboratory coordinate axes X, Y, Z. The term pxE(f) in Eq. (1.15.2) is the
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gTEeell

Fig. 1.15.1. Spherical polar coordinate system.

torque due to an externally applied electric field. The overbar means a statistical
average over an ensemble of dipoles which, bearing in mind our interpretation of
the Langevin equation as an integral equation, start at time ¢ with the same
angular velocity @ and the same orientation p.

Equation (1.15.2) includes the inertia of the sphere. The non-inertial limit is
the limit when / tends to zero or when the friction coefficient ¢ becomes very
large. In this limit, the angular velocity vector may immediately be writtcn down
from Eq. (1.15.2) as

o(f) =g [Mt) + p(t) < E(#)]. (1.15.4)
We combine this with the kinematic relation, Eq. (1.15.1), to obtain
GI(1) = 1) x p(0) + [ X B ()] x p (1), (1.15.5)

This 1s the Langevin equation for the motion of p in the non-inertial limit.
Equation (1.15.5) refers to one selected dipole. We may use that equation to

1.15.1) using the intuitive method presented above in Section 1.2. As we saw in
that section, the current density J in the absence of thermal agitation is

J, =Wa, (1.15.6)

where u is a unit vector along p and W (%, ¢,?) is the density of dipole moment
orientations on a sphere of unit radius. The orientation of the unit vector u is
described by the polar angle 9 and azimuth ¢ with u, =sin $cose,
u, =sin dsin @, and u, =cosd. The applied electric ficld E(/) is the negative

VN 4 1 o
. o -J, (1.15.7)

— ¢ —e
99 ° singdp 7
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where e is a unit vector in the direction of § increasing, e, is a unit vector in the
direction of ¢ increasing, and e, is a unit vector in the direction of u. The vector
products in Eq. (1.15.5) are then i spherical coordinates

e, e, e,
1 0 0 | 1 oV oV
!.I.XE: €, _——eqp’
ov. oV _ 1 or sm9 640 09
ou 0.9 sin 9 6‘@
e, e, e,
1 or oV ov 1 ov
(pxEyxp={0 : ——|=—pu| —e, +————
(xE)xp sing0p 03 ’”(63 * " sin 6(0%}’
)7 0 0
so that the drift current density, Eq. (1.15.6), is
1 oV 1 oV
J,=—]e,—+e, ——— |W. 1.15.8
¢ gli 09 ?sind 6¢,’0i! ( )

Equation (1.15.8) refers to the current density in the absence of thermal
agitation, which has been calculated from Eq. (1.15.6) neglecting the noise term.
To include thermal agitation, we add to J; a diffusion term

Kl 18
J. =_D \ 2w, 1.15.9
ait = { v39 ¢ sin-S‘ago:I (1.15.9)

the tendency of which is to spread the density of dipole moment orientations,
i.e., to make them more uniform. Here D, is the rotational diffusion coefficient.
The continuity equation

a_av?+d g, 1 [6(5111,91 )+i1¢}

ot sind| o9 Og
where J = Jy + J4 is the total current density, so that
W oV oW
J&‘ = —?‘3‘5 —DR 519 s

oW v Dy W
* = sind dp sind 0p’
gsind dp s

then yields the Fokker—Planck (here the Smoluchowski) equation

oW | 14 1 9 oV
— =D, AW + W — | W . (1.15.10)
ot QLmS 59( " ] 51“2'95‘?’( @qaﬂ ( :
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Here the operator A is given by

2
- .1 i[singi}r rm, 76 , (1.15.11)
sin & 6.9 08) sin® @ ¢’

i.e., the angular part of the Laplacian. Now, in equilibrium W =0, so that W
must reduce to the Boltzmann distribution W, = Z7'e™ ") (7 {5 the partition
function). Substituting #, into Eq. (1.15.10), we then find the rotational
diffusion coefficient D, = kT /¢. If we define the Debye relaxation time by
7 =1/(2Dy), the rotational Smoluchowski equation, Eq. (1.15.10), becomes

22*][:,E‘EK=/1‘.W-I=-—L _1 i(sianWa—V]+ _12 9 WfBK . (1.15.12)
Ot kT | sin$ 0.9 08/ sin® §0p\ Op)|

We shall now follow Debye [32], who specialized this equation to a d.c. field E
applied along the polar axis (so that V' =-uEcosd¥). Eq. (1.15.12) then
becomes

20, 2 i[sin&(a—w+y—Esin &W)]. (1.15.13)
ot sin$ o9 08 kT

This equation obtained by Debye [32] is simply the Smoluchowski equation

written in spherical polar coordinates. We remark that Eq. (1.15.13) is also the

correct form of the Smoluchowski equation for isotropic rotational diffusion of

prolate or oblate spheroids. ’

The general solution of Eq. (1.15.13) is
W($,6)=>" a,()P,(cos 9), (1.15.14)
n=0

where the P, (z) are the Legendre polynomials [95] and the a,(f) are functions
to be determined. However, as far as dielectric relaxation is concerned, we are
generally interested in the linear approximation in the applied field. Thus, for the
after-effect solution in which the steady field E =E is suddenly switched off at
time =0, we may assume that # has the form

1 HE

125 o) cos @, 1.15.15)
4”( o g(t)cos ) ( 5)

W(4,t)=

which, on substitution into Eq. (1.15.13), yields g(t)=e™™. Thus the mean
dipole moment u (cos .9) is, taking account of the azimuthal angle ¢, given by

2w

2
{cos 9) = ,uj IWCOSSSm 9d 9d g =£3%]T“e"”“. (1.15.16)
00
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Likewise we may deduce that, when the field E is alternating so that E=E_ &,
the value of the mean dipole moment is

‘ler Emeifot
3T 1+imry,

#{cos 3) = (1.15.17)
We see at once that there is a difference in phase —tan™' (wr,) between
#{cosP and E. This phase difference persists if, in place of E_e™, we take its
real and imaginary parts E,, cos @t or E,, sin @t. Debye made an estimate of the
relaxation time 7, by assuming that the Stokes formula for the frictional torque
on a rotating sphere, ¢ = 87na’, applies to the dipole molecule (7 is the viscosity
of the liquid, a is the radius of the sphere). For water at room temperature, where
77=0.01 Po, and assuming that a=2 x 10 cm, he found ¢ to be 2 x 1072* which
yields a relaxation time zp of 0.25x 107'° s, Thus the maximum dielectric loss
should occur in the microwave frequency region. This is the principle of
operation of the microwave oven.

1.15.1. Breakdown of the Debye theory at high frequencies

As we have emphasized, the Debye theory of dielectric relaxation ignores the
inertia of the rotating dipoles. Thus as has been said repeatedly, that theory
breaks down at very short periods ~107"?s. (The discussion is largely due to
Sack [96]). In order to achieve maximum clarity in our presentation, we now
summarize the main findings of the Debye theory. First of all, by the preceding
discussion it is apparent that if a system is subject to an a.c. field E,, cos o,
which is not so large as to cause nonlinear effects, then the steady-state response
may be described by a complex susceptibility y(w)= y'(@)—iy"(®)
depending on the angular frequency @, such that the longitudinal component of
the time-dependent dipole moment (M, )}(¢) of a dielectric sample is

(M )) < E, [ x'(@)cos wit + y"(w)sin wt]. (1.15.1.1)

The coefficient y"(@) is a measure of the energy loss per cycle for a constant
amplitude E,. The susceptibility y(w) is given by the Debye equation

Hwy=—2O (1.15.1.2)
1+iwr,
The dielectric loss y"(w) has a maximum for @z, = 1. Experimental curves of
X"(®) vs. wusually show a peak broader than that predicted by Eq. (1.15.1.2).
This can be explained by a distribution f(7) of relaxation times 7, so that we
have
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Figure 1.15.1.1. (Left) Absorption coefficient & vs. frequency V [V = @/ (27¢)] for
liquid chlorobenzene at 20 °C. The solid line represents the far-infrared experimental
data, the broken line links the microwave data (symbols), the dotted line represents &
calculated from the Debye equation, Eq. (1.15.1.2). (Right) a vs. ¥ for liquid methyl
chloroform at 20 °C. The solid line (a) represents the experimental data, the broken line
(b) represents « calculated from the Rocard equation, Eq. (1.15.1.4), and (c): (a)-(b).
Reproduced by permission of the Royal Society of Chemistry from Ref. [97].

x(@) :Tf(f)df (1.15.1.3)

x'(0) 1+ior’

We shall illustrate in Section 1.22 how this distribution of relaxation times may
arise naturally. Whatever the mechanism for the relaxation, however, Egs.
(1.15.1.2) and (1.15.1.3), break down at very high frequencies since the
absorption coefficient a(®) o« wy"(w) — constant (the Debye plateau) as
@ — 0. They predict, for example, an infinite integral dipolar absorption [98]
with complete opacity in some extreme cases such as water (“Black Water")
[96] and an infinite rate of energy loss for an electron travelling through the
material. They are also unable to account for the resonance or Poley [97, 99—
104] absorption peak occurring in the far-infrared or terahertz band of
frequencies (see Fig. 1.15.1.1). This problem is discussed in Chapter 11.

Furthermore, in the time domain, the Debye equations imply that an abrupt
change in the field E would produce an instantancous finite alteration of the rate
of change of the dipole moment (i), which is impossible in view of the finite
rotational inertia of the dipoles. In general, the product wy"(w) must tend to
zero in the limit of high frequencies [100]; hence, in the frequency range in
which y(@) can be expanded in negative powers of @, i.e.,

‘ a a
y(@)=ay+ -+ —Lo e
iw (iw)
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the coefficient a; must vanish. This is compatible with a distribution of
relaxation times of the type given in Eq. (1.15.1.3), only if the function y(logz)
can take on negative as well as positive values [96]. In the time domain, the
stipulation that @y"(®@) must vanish means that the Taylor expansion of the
after-effect function must not contain terms of order [f. The above
considerations show that, in dielectric relaxation processes, inertial effects
become important at high frequencies. Consequently, there have been many
attempts to include them in the Debye theory [40, 96]. The earliest attempt was
that of Rocard in 1933, followed by Dimitriev and Gurevich (1946) and Powles
(1948) [96]. Rocard derived the equation now known as the Rocard equation

AC) L , (1.15.1.4)
x'0) l+iwr, -o’tI/¢
which shows the desired return to transparency at high frequencies (the second
characteristic time 7/ ¢ is of the order 107'%-107" s). The calculations were all
based, in one way or another, on the inclusion of an extra term in the
Smoluchowski equation, thus rendering them only partially correct. Indeed,
inertial effects can be consistently treated only on the basis of the Klein—
~ Kramers equation, which considers distributions in configuration-angular
velocity space where both angular positions and angular momenta (or angular
velocities) are taken as independent variables, or of the inertial Langevin
equation. The first investigator to adopt the approach based on the Klein—
Kramers equation was E.P. Gross in 1955 [105], who considered the behavior of
rigid dipoles rotating about fixed axes in a viscous medium. The paper of Gross,
however, does not include a detailed description of how his results were
obtained; the reader is referred to the work of Sack [96] who gave a detailed
derivation of these results and extended the theory to rotation in space.
McConnell [40] has succinctly reviewed all the calculations described above.
We have formulated the Debye theory of dielectric relaxation, utilizing the
vector method based on the kinematic relation of Eq. (1.15.1). This method has
the advantage that it may be easily adapted to include the effects of a crystalline
anisotropy potential, as is required in the theory of dielectric relaxation of
nematic liquid crystals [94] (see Chapters 7 and 8 for a detailed treatment) and
the effect of the electric dipole—dipole coupling between dipolar molecules. If
both effects are included, the potential energy (in the case of uniaxial anisotropy
for N similar dipoles with common anisotropy axis n) would be
N N N " : -r.)
V=-2n E - Ku (g -nl+y > {ui :LJ 3 l‘,—,—)s(ll,- r"j)},
=1 i=l ) [

i i=l i< (i) B if
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where the first term arises from the external field, the second term is the uniaxial
anisotropy energy, the third term is the dipole—dipole interaction energy, r;; is
the vector separation, and K is the anisotropy constant. Unless the dipole-dipole
interaction energy is zero, it is impossible to make the assumption that each
dipole of the assembly behaves in the same way as it does in the Debye theory,
which ignores all intermolecular interactions. Another advantage of the vector
formulation is that it facilitates comparison with the Langevin equations
governing the magnetization kinetics of superparamagnetic nanoparticles such
as the Landau-Lifshitz or Gilbert equations [58, 106], a topic which we shall
now discuss.

1.16. Superparamagnetism: magnetic after-effect

In general, a particle of ferromagnetic material [35] below a certain critical size
(typically 150 A in radius) constitutes a single-domain particle meaning [107]
that it is in a state of uniform magnetization for any applied field. If we denote
the magnetic dipole moment of such a particle by p and ignore the anisotropy
energy, and if we further suppose that an assembly of them has come to
equilibrium at temperature 7 under the influence of an applied magnetic field H,
then we will have, for the mean dipole moment in the direction of the field,

(n-h) = p(coth &~ &™) = ul(g), (1.16.1)

where h=H/H, L(£) is the Langevin function [98, 108], and & = uH / (kT)
is a dimensionless field parameter. The behavior is exactly analogous to that of
an electric dipole in the Debye theory of the static electric susceptibility [98] or
the Langevin treatment of paramagnetism; the vital difference, however, is that
the magnetic moment p is not that of a single atom but rather of a single-
domain particle of volume v which may be of the order of 10°-10° Bohr
magnetons, so that extremely large moments and large susceptibilities are
involved: hence the term superparamagnetism. The superparamagnetism, or
thermal instability of the magnetization, occurs if the thermal energy AT is
sufficient to change the orientation of p of the entire particle. Then the thermal
agitation causes continual changes in the orientation of p and, in an ensemble
of such particles, maintains a distribution of orientations characteristic of
thermal equilibrium. Hence the number of particles with orientations of p
within solid angle dQ = sin $d3dgp is proportional to ™" ®* g0y where V
is the free energy per unit volume and 4 and @ are angular coordinates which
describe the orientation of p. Thus the overall behavior is just like assembly
of paramagnetic atoms. There is no hysteresis, merely saturation behavior.
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Figure 1.16.1. (a) A ferromagnetic material, where the domains of the material are
magnetized in the directions of easy magnetization. The arrows indicate the direction of
the magnetization of each domain, where adjacent domains have opposite directions of
magnetization, so that the overall magnetization of the material is negligible. If we apply
a uniform external magnetic field, in the direction shown, some of the domains, those
with magnetic orientations perpendicular or opposite to the direction of the applied field,
become unstable and quickly rotate to another direction of easy magnetization in the
same direction as the applied field. This is illustrated in (b). If we were to increase the
applied field to the point of saturation, we would have the situation of (c).

The theory that a ferromagnetic material consists (magnetically speaking) of
elementary regions, each magnetized almost to saturation in some direction, was
first proposed by Weiss [107] in 1907. He assumed that these regions coincided
with the crystals of which the material was composed, an assumption which was
subsequently refuted by Frenkel and Dorfman and by Heisenberg and Bloch
[107], who realized that even a single crystal is comprised of these minute
permanent magnets, now known as magnetic domains (Figure 1.16.1). However,
the exact nature of domains remained under debate until 1935 when Landau and
Lifshitz [107] discovered them to be in the form of elementary layers.

Single-domain particles will in general not be isotropic, as is assumed in
deriving Eq. (1.16.1), above but will have anisotropic contributions to their total
energy associated with the external shape of the particle, imposed stress or the
crystalline structure itself. If we consider the simplest anisotropy energy, namely
the uniaxial one, then the total free energy of the particle, v¥, will be (if the
applied field H is assumed parallel to the polar axis)

vV = Kvsin®9— uHcos 9, (1.16.2)

so that the magnetization curve will no longer be the Langevin function.
However, the dominant term governing the approach to saturation will still be
1-&7' [107]. |

The discussion so far has been concerned with equilibrium behavior. We
now have to consider magnetic afier-effect behavior; i.e., under what conditions
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an assembly of single-domain particles can achieve thermal equilibrium in a
time that is short compared with the time of an experiment. One way of
achieving equilibrium is by physical rotation of the particles; this can occur if
they are suspended in a liquid carrier — this is a ferrofluid. Here [107] the factor
determining the rate of approach to equilibrium is the viscosity of the medium in
which the particles are suspended — this mechanism may be treated using the
Debye theory, as illustrated above for electric dipoles. The mechanism is
described in more detail in Section 1.19 below which deals with ferrofluids
[109]. We remark that the conditions for the validity of the Debye theory are
much better satisfied for a ferrofluid than for electric dipoles, because the
ferrofluid particles, owing to their relatively large size, are a much closer
approximation to idealized Brownian particles than are polar molecules. In
addition, the dynamical behavior of the particles will manifest itself in the mid-
radio frequency (medium wave) region rather than in the microwave band.

In a solid, physical rotation of the particles cannot take place. However, in
1949, Néel [110,111] pointed out that, if a single-domain particle were
sufficiently small, thermal fluctuations could cause its direction of magnetization
to undergo a type of Brownian rotation, so that the stable magnetic behavior
characteristic of a ferromagnet would be destroyed. Here, since the relaxing
entity is the magnetic moment inside the particle, the inertia of the particle will
of course play no role, because no physical rotation of the particle occurs, unlike
in Debye relaxation of a polar molecule. An example given by Brown [112] of a
tape recording is of interest: we expect that if we put this recording on a shelf
that it will stay in the same magnetic state; we would be surprised if it suddenly
jumped from being a recording of Beethoven to a recording of Brahms. In
principle, however, [112] the apparent stability of the recording is only one of
many local minima of the free energy: thermal agitation can cause spontancous
jumps from one such state to another. The apparent stability [112]
(ferromagnetic behavior) arises becausc our tape or magnet cannot get from one
magnetic state to another without passing over an energy barrier which is very
large in comparison with 7. Thus, the probability per unit time of a jump over
such a barrier is so small that the mean time we would have to wait for it to
occur far exceeds our own lifetime; we perceive stable ferromagnetic behavior.
However, if the barrier is neither very large nor very small in comparison with
the noise strength 47 (our case), then the specimen neither remains in a single
change in field: it instead undergoes a change of magnetization which is not
completed instantaneously but lags behind the field. This is called magnetic
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afier-effect, or magnetic viscosity, or Néel relaxation, and occurs only for
sufficiently fine ferromagnetic particles. In order to illustrate the Néel
mechanism [107], consider an assembly of aligned uniaxial particles in the
presence of a field H, whose potential energy is given by Eq. (1.16.2). Thus, the
particles are fully magnetized along the polar axis, which is the axis of
symmetry. A sufficiently long time after the field is switched off, the remanence
will vanish as

M, (t) =M™, (1.16.3)

which is the longest lived mode of the relaxation process. Here My is the mean
magnetization of a non-relaxing particle, ¢ is the time after the removal of the
field, and 7 is the superparamagnetic relaxation time. Néel [110, 111] then
suggested that, from TST theory [61, 62], the relaxation time 7 is given by

T—l =j;)e_vK/kT , (1.16.4)\

where f, is roughly the frequency of the gyromagnetic precession [108] so that,
by varying the volume or the temperature of the particles, 7 can be made to vary
from 107 s to millions of years ( S, is often taken as small as 107'°-107" s in
practice). The presence of the exponential factor in Eq. (1.16.4) indicates that, in
order to approach the zero remanence (corresponding to thermal equilibrium), a
sufficient number of particles (magnetic moments) must be reversed by thermal
activation over the energy barrier vK. The probability of such a process is
proportional to ¢™*"*" (compare the Kramers transition state method above).
For example, when H=0, Eq. (1.16.2) is a symmetric bistable potential with
minima at 9=0 and 9= rand a maximum at $= z/2.

Néel’s calculation of 7 was later criticized by Brown [106] on two counts (at
this point, the subject matter of the book comes into play): (i) the system is not
explicitly treated as a gyromagnetic one; and (ii) it relies on a discrete
orientation approximation. Brown [106] suggested that both of these difficulties
could be resolved by constructing the Fokker-Planck equation for the PDF of
magnetic moment orientations on the unit sphere from the appropriate Langevin
equation. He was then able to find, using the Kramers method, an approximate
formula for r in the high-barrier limit for the potential of Eq. (1.16.2) which
agreed with Néel’s formula except for the prefactor ;. This is discussed in detail
in Sections 1.17 and 1.18 below.

It is apparent from Eq. (1.16.4) that the Néel relaxation time r depends
exponentially on the particle volume; hence there is a fairly well-defined particle
radius above which the magnetization will appear stable. We consider the
figures given by Bean and Livingston [107] for a spherical iron particle with
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uniaxial anisotropy Kvsin® 9. A particle of radius 115 A will have a relaxation
time of 107" s at 300 K, so that the moment will relax almost instantaneously. A
particle of radius 150 A, on the other hand, will have a relaxation time of 10° s
and so will be exceedingly stable (i.e., the moment will not reverse in this time;
see the preceding example above). This situation corresponds to an energy
barrier that is very large in comparison to k7 where, for any reasonable
measurement time [106], we may ignore thermal agitation and calculate the
static magnetization by simply minimizing V with respect to the polar and
azimuthal angles (9, ¢) for each value of an applied field Hy. This is the well-
known Stoner—Wohlfarth calculation [113]; it leads to hysteresis because in
certain field ranges two or more minima exist and transitions between them are
neglected. Here a typical potential would be [114]

vW(9,p) = Kvsin® §— puH,(cos Ycosy +siny sin $cos @). (1.16.5)

The polar axis k is the easy axis of magnetization; the field Hy is applied in the
xz plane at an angle y to the easy axis. Thus, in general, there will be only a
narrow range of particle sizes for which the relaxation time will be of the order
of experimental times, and for which measurable “magnetic viscosity” effects,
manifesting themselves as an observable change of magnetization, lagging
behind field changes, would be expected. Bean and Livingston have given a
rough measure of the size of the particle for transition to stable behavior, taking
7 =102 s, they find that the energy is 25k7. The temperature at which this occurs
for a given particle is called the blocking temperature. They obtain sizes of 40 A
for h.c.p. cobalt, 125 A for iron, 140 A for f.c.c. cobalt. We mention that, in an
assembly consisting solely of single-domain particles, the remanence at a given
temperature should be a measure of the amount of material with particle volume
greater than the volume that is just stable at this temperature. Thus [107], by
following the increase of remanence with decreasing temperature, we can find
out how much material lies in various ranges of volume, and so determine the
particle size distribution.

of relaxation, that is rotation of the magnetic moment inside the particle due lo
thermal agitation, through the study of paleomagnetism. Much work had been
done on measuring the intensity and direction of the remanent magnetization in
rocks, with the view that such data would yield information on the strength and
direction of the earth’s magnetic field at the time the rock was formed. As is
well illustrated by the elegant exposition of Blackett [115],

“The detailed study of the natural magnetization of rocks is likely to allow us
to trace back to the beginning of geological time both the history of the earth’s
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magnetic field and the motion of continental masses relative to each other and
to the geographical pole. The ability of the magnetic rocks to “remember’” an
earlier magnetic field depends on their ability to exist in thermal equilibrium
with the earth’s field at a stage early in their formation but to be later “frozen”
in a state of magnetization stable againgt later changes of the direction and
strength of the field.”

Thus [107] the establishment of thermal equilibrium of the rock magnetization
may be accomplished by either the Debye or Néel mechanisms. The Debye-like
mechanism occurs [107] in sedimentary rocks. There the particles align
themselves with the direction of the earth’s field by mechanical rotation, while
the sediment is still wet and uncompressed. Later the sediment becomes
relatively hard rock and this ferrofluid-like behavior is lost, so that Debye
relaxation can no longer take place and the magnetization is thus stable against
later changes in the earth’s field, so preserving the direction of the earth’s
magnetic field from the epoch in which the sediment was laid down.

In igneous rocks, however, the materia] becomes magnetic by cooling
through its Curie point [107], and there is no mechanical rotation of the
particles. At high temperatures, however, the ratio of bartier height to thermal
energy is such that Néel relaxation may occur. Clearly, this will be in the early
stages of the formation of the rock (€.g., in mountain building periods). As the
rocks cool, the magnetization will become Stable: the particles will have cooled
to a temperature below their blocking temperature and the magnetization will be
thus stable against later changes in the earth’s field, again preserving the
direction of the earth’s magnetic field from the epoch in which the rocks have
formed. The relaxation times in this case are of the order of geological times.
The rocks thus play the role of “magnetic fossils” (rocks from widely scattered
parts of the world but of the same age showing the same magnetic patterns),
giving evidence of a past reversal of the earth’s magnetic field, records of a time
When the northern magnetic pole resided Where the southern magnetic pole is
today. Reversals are believed to have occurred ag many as 25 times during the
last 5 million years, with the last such reversal having occurred about 730,000
Years ago. In an apt phrase coined in 2 Popular article by Dr. William Reville,
“the earth’s magnetic chronicle js written in sione,

Another possible mechanism of magnetic relaxation over potential barriers,
which is of much current interest, 18 MAaCToscopic quantum tunneling of the
Magnetization (“macroscopic” because ©Of the large number of spins involved),
Which was originally suggested by Bean and Livmgsmﬂ [107]. By this is meant
the possibility of transitions of the magnetic moment at absolute zero from a
State of complete alignment to a state Of Zero overall magnetization, owing to
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quantum tunneling [116] of the magnetic moment through the anisotropy
potential barrier (see [63] for a recent review of single-particle measurements).

Before we proceed to the more sophisticated treatment of Brown [106] based
on the Langevin equation, we shall briefly describe the discrete orientation
model for the calculation of the Néel relaxation time (this model is described in
detail in Chapter 9, Section 9.4.2). We shall suppose that the energy barriers are
so large in comparison with k7 that the magnetization is always along one of the
directions (&, ¢;) of easy magnetization; nevertheless, the barriers are not so
high as to preclude changes of orientation altogether. Thus, in orientation i, there
is a probability v, per unit time of a jump to orientation j. The v, depend on K,
H, and kT. Let us now suppose that we have only two orientations as for a
uniaxial anisotropy given by Eq. (1.16.2). Let 1 and 2 refer to the positive and
negative orientations, respectively. If we have a large number » of identical non-
interacting particles, the number of particles #, in orientation i then changes with
time in accordance with the equations

A, ==, =V, 1, —V,N,. (1.16.6)

Hence, we have the evolution equation [117]

d

E(”z "”1);'_("’21 +v12)(n2 _”1)+‘("’12 _V21)”9

so that n; and n, approach their final values when v, and v, are constant
according to the factor ¢ “**)"  that is, with time constant

T=(v,, +vy,)". (1.16.7)

If v;’ is the frequency of oscillation of a particle in a potential well, the
probability per second for the flip of a particle from orientation 7 to orientation j
is given by

[V, ~F (kT

Vg=vi?€ , (=1,j=2o0ri=2,j=1), (1.16.8)

where V; is the free energy density in orientation i, and ¥, is the free energy
density at the top of the barrier between the orientations i and j; v is, as usual, the
particle volume. The frequencies V,f., if they vary with temperature, are assumed
to do so slowly in comparison with the exponential factor, and are often taken to
be constant, although Neel [110] has calculated them explicitly (see Refs.
[106, 111, 112]). We reiterate that, regardless of the precise form of V,:.?, if the
ratio v/ T changes by a factor of less than three in a certain critical part of its
range, the time constant, Eq. (1.16.7), changes from 107 to 10°s. Thus, to a
good approximation [112], we may reaffirm that a critical volume v, exists such
that particles with v<v, are superparamagnetic. We remark that the discrete
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orientation model of overbarrier relaxation was originally proposed for dielectric
relaxation in polar crystals by Debye [32] and extensively developed by Frohlich
[117].

1.17. Brown’s treatment of Néel relaxation

The starting point of Brown’s treatment [106, 112] of the dynamical behavior of
the magnetization M for a single-domain particle is Gilbert’s equation which,
without thermal agitation, is

M = yM x(H-7M). (1.17.1)
In Eq. (1.17.1), y is the ratio of magnetic moment to angular momentum
(gyromagnetic ratio), 7 is a phenomenological damping constant,
ov. ev oV .oV oV

EI[:— s =1 -l—‘]\ -+ ,
oM’ oM oM, oM, oM,

(1.17.2)

and V' is the Gibbs free energy density (the total free energy is vV'). In general,
H represents the conservative part and —nM the dissipative part of an “effective
field.” Brown now supposes that, in the presence of thermal agitation, the
dissipative “effective field” —yM describes only the statistical average of the
rapidly fluctuating random field due to thermal agitation, and that this term must
become —77M +h(¢), where the Gaussian random field h(z) has the properties

B@)=0, )k (6)=Q2kTn/v)8,8(t ~1,). (1.17.3)

Here the indices 7,j=1,2,3 correspond to the Cartesian axes X, ¥, Z of the
laboratory coordinate system. The overbars denote statistical averages over a
large number of moments, which have all started with the same orientation
(:#,¢) (here we use spherical polar coordinates; see Fig. 1.15.1). On assuming
that the A,(r) obey Isserlis’s theorem (Section 1.3), Brown [106] was then able to
derive, after a long and tedious calculation using the methods of Wang and
Uhlenbeck [13,58], the Fokker-Planck equation for the density of
magnetization orientations W (9, ¢,¢) on the sphere of radius M. This
procedure may be circumvented, however, by using an alternative approach
given by Brown which appears to be based on the argument of Einstein given in
Section 1.2.

In order to illustrate this, we first write (cross-multiplying vectorially by M
and using the triple vector product formula) Gilbert’s equation in the absence of
thermal agitation (noiseless equation) as an explicit equation for M (see
Chapter 9, Section 9.2.1), namely
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M=a"'W'Mg(MxH)+ (MxH)xM, (1.17.4)
where a =nyM, is a dimensionless damping coefficient and
[ S—
(1+a> )M,

Equation (1.17.4) has the mathematical form of the earlier Landau-Lifshitz
equation, namely

M:y(MxH)+%(MxH)xM, (1.17.5)
3

which may be written from Eq. (1.17.4) by taking the low-damping limit, a<<1
(usually, « lies in the range 0.01 to 1). On writing M =uMg, Eq. (1.17.4)

becomes
ll=—h—(uxiVJ+h'ux(ux—a—V). (1.17.6)

o ou cu

Here, instead of M we use the unit vector u, where the Cartesian coordinates
are the direction cosines u; of M so that §/8M may be replaced by M;'d/ du,
where &/06u means the gradient on the surface of the unit sphere [106] so that,

in the spherical coordinate system (Fig. 1.15.1), the operator 8/0u is

0.9 L 0, (1.17.7)

A T aa%e T
ou &9 sind dp
The instantanecus orientation (%, @) of the magnetization M of a particle

may be represented by a point on the unit sphere (1, §, ¢). As the magnetization
changes its direction, the representative point moves over the surface of the
sphere. Following [112], consider now a statistical ensemble of identical
particles and let W (%, o, 1)dQ) be the probability that M has orientation (8, ¢)
within solid angle dQ =sin 3d%d@. The PDF W(3,¢,t) is then related to the
probability current J of such representative points swarming over the surface S
of the sphere by the continuity equation

W +divd =0. (1.17.8)

Equation (1.17.8) states that the swarming representative points are neither
created nor destroyed, merely moving to new positions on the surface of the
sphere [112]. Now in the absence of thermal agitation, we have J = Wa, where
it is given by Eq. (1.17.6). Let us again (as in Section 1.2) add to this J a
diffusion term —k'0 W (k' is a proportionality constant to be determined later),
which represents the effect of thermal agitation; its tendency is to smooth out the
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distribution, i.e., to make it more uniform. This intuitive procedure, just as with
the dielectric problem of Section 1.15, gives for the components of J (on
evaluating wx 8V /ou, etc. in spherical polar coordinates)

J = | L1 Ty Ko (1.17.9)
0% asing op h 08
J, =—H 19, _1 Vw4 k w (1.17.10)
a 08 sind oo h'sin & d¢

Equations (1.17.9) and (1.17.10), when substituted into the continuity Eq.
(1.17.8), now yield Brown’s Fokker-Planck equation, namely

W waw+ 10 [in g2 LV Ny O N1 OV 1 oVl
ot sin g | 69 08 aodp) | Op|\add singdp

(1.17.11)
which may be written in compact vector form as
o _ k'AWJ’-u-(iVx_‘?-W w2 (wly)  air12)
ot a ou u cu ou

the angular part of the Laplacian A being as defined by Eq. (1.15.11). The terms
in Aa™ and # are the precessional (gyromagnetic) term, giving rise to
ferromagnetic resonance (usually in the GHz range), and the alignment term,
respectively. The constant &’ is evaluated by requiring that the Boltzmann
distribution W, (3, @) = Ae™" @YU of orientations (4 is a normalizing
constant) should be the stationary (equilibrium) solution of Eq. (1.17.11). The
imposition of the Boltzmann distribution of orientations yields

gk _ 1 (1.17.13)
v 21, 7
where
2
Ty _wM(+a) (1.17.14)
2kTya

is a characteristic (diffusion) relaxation time (7, is of the order of 107%-107 s).
When a— w (ie., ignoring the gyromagnetic terms) Brown’s equation, Eq.
(1.17.11), has the same mathematical form as the rotational diffusion equation,
Eq. (1.15.10).

Early studies of the magnetization relaxation process [58, 106] were mainly
confined to the axially symmetric solutions of Eq. (1.17.11), i.e., when
V=V(8) and W= W(9 t) (where the gyromagnetic terms automatically drop



Historical Background and Introductory Concepts 131

out of the Fokker-Planck equation). An example is the calculation of the Néel
superparamagnetic relaxation time (the time required to surmount the potential
barrier) 7 for uniaxial anisotropy for an applied field parallel to the easy axis. In
this case the Néel relaxation time is determined by assuming that the process is
dominated by a single relaxation mode (the barrier-crossing or Néel mode), i.c.,

r=1/1, (1.17.15)

where A; is the smallest non-vanishing eigenvalue of the Fokker—Planck
operator in Eq. (1.17.11) when it is converted to a Sturm-Liouville problem
[58, 106]. For axial symmetry, it is easy to convert Eq. (1.17.11) to a set of
differential-recurrence relations [58, 106] by expanding the distribution function
W (9 t) as a series of zonal harmonics (Legendre polynomials). These may be
arranged as an infinite set of linear equations [58]

X(1) = AX(), (1.17.16)

whence 4; may be determined as the smallest non-vanishing root of the
characteristic equation

det(AT - A) =0 (1.17.17)

by taking a sufficiently large number of equations. The restriction to axial
symmetry, so that only the zonal harmonics are involved, simplifies the problem
of solving Eq. (1.17.11) in two important ways. (1) It radically simplifies the
intricate manipulations of the spherical harmonics Y, (,¢) [95] (see Chapter
7, Section 7.2.2), which are required in order to obtain the set of differential-
recurrence relations. After simplification only one index /, the order of the
spherical harmonics, is involved. (2) The restriction to the single index / reduccs
the number of equations to be solved in Eq. (1.17.16), thereby eliminating the
loss of precision in floating-point calculations which so bedevils numerical
calculations associated with the non-axially symmetric solutions [78, 112].

The two important problems, involving non-axially symmetric potentials,
are: (i) uniaxial anisotropy, where the assumption that the applied field and
anisotropy vector are collinear 1s abandoned (the potential of Eq. (1.16.5) is a
special case of this, where the external magnetic field Hy is assumed to be
applied along a line of longitude); and (ii) cubic anisotropy, in which V becomes

V{9, ¢) =iz:——(si1:12 28+sin* Jsin® 2¢). (1.17.18)

Here, the direction of the magnetization of a particle is always defined by the
two polar angles & and ¢ measured from one of the easy axes. Equation
(1.17.18) is written for cubic anisotropy in zero applied field with {100} as the
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easy axis where K> 0. If the easy axis is {111}, the same expression can be used
with K <0 [112]. For particles with cubic anisotropy, the energy barrier between
adjacent easy directions of magnetization will appear in the exponent; the barrier
is Kv/4 for K>0 and [Kv|/12 for K<0. We shall treat these non-axially
symmetric problems in detail in Chapter 9.

1.18. Asymptotic expressions for the Néel relaxation time

At the time Brown was writing (1963), the lack of advanced computing
facilities, without which A; cannot be calculated from Eq. (1.17.17), compelled
him to seek simple analytic formulas for A; in the high-energy barrier
approximation. This was accomplished by utilizing the Kramers escape-rate
theory of Section 1.13, suitably modified for rotation in space and for a non-
separable Hamiltonian (as we shall see in Section 1.18.2), as the Kramers theory
had originally been formulated for translational Brownian motion of point
particles.

1.18.1. Magnetization reversal time in a uniaxial superparamagnet:
application of Kramers’ method

The solution for the escape rate for an arbitrary potential of the magneto-
crystalline anisotropy will be given in Section 1.18.2 using Langer’s method. Tt
is instructive, however, to first give the solution for the particular case of axially
symmetric potentials, as this illustrates the application of Kramers’ theory to the
magnetic problem. Here, the escape rate has the interesting particular property
that it is valid for all values of the damping parameter ¢, unlike the mechanical
problem treated in Section 1.13. This is a consequence of the fact that in an
axially symmetric potential V' (&), the Fokker-Planck equation (1.17.12) for
the distribution function W(%,t) is effectively a one-space-variable equation,

viz.,
ZTNa—W: _]1 9 sin —aEH’V% (1.18.1.1)
ot sind o9 08 09

(here the abbreviation vV (&)/(kT)—>V(F) will be used). In Kramers’
mechanical problem, on the other hand, the governing equation, namely the
Klemn-Kramers equation, is always an equation in a two-dimensional state
space, and can only be converted to a one-dimensional equation in the limiting
cases (VLD and IHD). We remark that the IHD case is only quasi one-
dimensional, by virtue of the introduction of the variable u=p-—ax’. In
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magnetic relaxation, the three friction regimes of Kramers’ problem, namely
VLD, the crossover region, and IHD, will only appear when non-axially
symmetric potentials are involved.

For an axially symmetric potential V' (¥) with two wells at ¢ =0 and
&, =7z separated by a potential barrier at &, , we have aJ, /8¢ =0 since
W =W(%. Hence referring to Eq. (1.17.9), and recalling that, in the quasi-
stationary case W =0, the total current over the barrier J=2zJ,sind is
constant. Thus, with Eq. (1.17.9) we obtain

ﬂ.‘.a_VW: -V i(eVW)=— ZTNJ s
08 08 09 27 sin @

and so
. J G i
O (9) =2 [ osc 9’ a . (1.18.1.2)
T

Suppose now that W vanishes at the barrier angle 8=, (i.e., particles which
arrive at this boundary are no longer counted), so that W (4 )=0, i.e., all the
particles are absorbed. Then

T 3, ' |
W(9) =~ [ osc 9" d (1.18.1.3)
z 9
and the number of particles N, the well 7 is
‘gm 'gm ‘9m
N, =27 [ Wsin 9d9 =25 [ ¢ sin 9 [ csc 9'e" " dg'dg.  (1.18.1.4)
& 3, g

Thus, the characteristic escape (mean first-passage) time 7(%) from the well
is, via the flux-over-population method [21,118],

el

N, ; % :
7(8) ~ 7’ =-2r1, Jl. e’ sin .9_[ csc 3'e"d3'd 3.
s 3
On integrating by parts, we obtain
3, 9’
7(3) =27y | csc 8¢’ [ ¢ sin 9d 9d 9" (1.18.1.5)
3 8
This is the time to reach the top of the barrier, provided that all particles there
are absorbed, which is the boundary condition that W vanishes at &= 9,.
Equation (1.8.1.5) can also be derived using the mean first-passage time (MFPT)
approach [21,118] (see also Chapter 12, Section 12.4.1) by solving the equation
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(9= 1 _ —6—[(2" sin S—G—e“"r(.g)} =-—1
27, sin& 08 09
for 7(:%) with appropriate boundary conditions; here L, is the adjoint Fokker—
Planck operator.
In practice, a particle has a 50:50 chance of crossing, which means that the

corresponding Kramers escape rate I', from the well i is given by
I, =[27(9)]". (1.18.1.6)

The integrals in Eq. (1.18.1.5) may be approximately evaluated using steepest
descents [106, 118]. In order to accomplish this, we note that, for the exact time
to go from the well at % = 0 to the top of the barrier at $=49,,, we have

3, 9
7(0) = 27, _[ csc §'e’ ) j e’ sin 94 94 9". (1.18.1.7)
0 0

Employing Kramers’ argument in the manner described in Refs. [106] and
[118], the integral is now evaluated in the limit of very high potential barriers.
Since almost all the particles (i.e., the population) are situated near the minimum
at % =0, then Jis a very small angle. The well (inner) integral in Eq. (1.18.1.7)
may then be evaluated using steepest descents, yielding the well population as

E_V(O)

Ves(0)

[ e singdgx [ g OVEOT g (1.18.1.8)
0

- near &

The integral may be extended to infinity without significant error, since the
particles are almost all at the origin. Likewise, near the barrier 4 , the Taylor
series in V(Y) can be approximated by its first two non-vanishing terms
V(I =V(9,) -V, (9, (8-8,) /2. Hence, we have for the outer integral

V(9,) S
' e |y r_q 12
[ csc§'eVd g x——— [ VBN 2090 (118.1.9)
near &, sin 'gm —0

(here the range of integration in Eq. (1.18.1.9) may be extended to — since the
integral has its main contribution from values near to 4, and almost no
contribution lying outside these values). Because

# 2 2 VA
Ie—(x—#) 126% gy — o > (1.18.1.10)

—0

we have

[ cscde” Pd g ~ Jx e ),
near &, Sin "gm \/2 IV.;:&? ('gm )l
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Hence, in the high-barrier limit, the mean first-passage time 7(0) for transitions
from the point domain (%= 0) is

Ty . ’27[ eV(Sm)-V(U)

7(0)~— — (1.18.1.11)
Vs (0) \/ Vy(3,)| sind,
Likewise, the time to go from the minimum at &% = 7 to &, is
T@ﬂzzqdlflje””dgje”sm9d9, (1.18.1.12)
3 sin 4 >
which can be estimated in the high-barrier approximation as
[ V(9,)-V (x)
(% A . (1.18.1.13)

- ‘

)~ S
Vao(m) \V55(9,)] - sin S,

These are the times to reach the barrier from the debth of the well. According to

Eq. (1.16.7), the corresponding reversal time of the magnetization 7 is, in the
high-barrier limit, given by

‘ -1
rzm+nﬁ=(1 e 220 8004
27(0) 2z(x) 7(0)+ (7))

For example, for the axially symmetric potential ¥ = o(sin® &—2hcos 9),
cf. Eq. (1.16.2), we have, from Eqs. (1.18.11)(1.18.14) (details in [118]),

Wy Jr ) —o(l+h) o (1-h)
r ;ﬁﬁajﬁnme +(1—h)e }
[oc=vK/(kT) and h =M H /(2K)], which in the limit # — 0, reduces to

_ Ty Jre?
- 1g%2
Equation (1.18.1.16) is Brown’s asymptotic formula [106] for the reversal time
of the magnetization for uniaxial superparamagnets. For arbitrary barrier
heights, the mean first-passage time, Eq. (1.18.1.14), yields [118]

-1
~h _—o(?+2hz) =
]. e g 12 '
-1 _ a(z"+2hz") i
ToEer = j > Ie dz'dz

-1

. (1.18.1.15)

(1.18.1.16)

T

4TN I -z |

Loz L L !
+j____ﬁe dz'dz | |. (1.18.1.17)

z
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v
o(1+h)?
2 i}
‘ / o(1+h%)
7 0 19‘,,, T
—20h

Figure 1.18.1.1. (a) The profile of the uniaxial potential V = o(sin’ 9—2hcos),
showing a maximum at 2=.9 =arccos(—%) and minima at $=0 and 7z Particles in the
shallower well are inhibited from crossing into the deeper well by the potential barrier of
height o(1-%)*. The particles populating the deeper of the two wells, however, must
possess greater thermal energy to be able to cross over into the shallower well, owing to
the elevated potential barrier height denoted by o(l+4)*. (b) Reversal time of the
magnetization 7 vs. o (inverse temperature parameter) for A=0, 0.2, and 0.4. Solid
lines: numerical calculation of the inverse of the smallest non-vanishing eigenvalue of the
Fokker-Planck operator 1; (see Chapter 9, Section 9.3). Dashed lines: Brown’s
asymptotic equation, Eq. (1.18.1.15). Symbols: the MFPT equation, Eq. (1.8.1.17).

As can be seen in Fig. 1.18.1.1, Eq. (1.18.1.17) provides a good approximation
for the reversal time 7 =~ A" for any barrier height, while Eq. (1.18.1.15) allows
one to estimate 7 for o > 3. We shall return to Egs. (1.18.1.15) and (1.18.1.17)
later, in Chapter 9,

We now consider non-axially symmetric problems, so that the various cases
(IHD, VLD, etc.) of the Kramers calculation will appear.

1.18.2. Escape rate formulas for superparamagnets

The application of Kramers’ escape theory to superparamagnetic relaxation in
the IHD limit has been given in detail by Smith and de Rozario [119], Brown
[112], Klik and Gunther [120], and Geoghegan et al. [78] (all this work is
described in Ref. [44]). Klik and Gunther [120] used Langer’s method
(described in Section 1.13) and realized that the various Kramers damping
regimes also applied to magnetic relaxation of single-domain ferromagnetic
particles.

In this section, we show in detail how Langer’s method may be used to solve
this problem. Again, we deal with an energy (or Hamiltonian) function,
E=V(3,¢), with minima at points 4 and B separated by a barrier (saddle
point) at C (see Fig. 1.13.1). We use spherical polar coordinates (3, ¢), where $
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is the polar angle and ¢ is the azimuthal angle as usual. The noiscless Gilbert
equation, Eq. (1.17.6), takes the form in the coordinates (p =cos 3, ¢) [112]

p=-IQ-po,V-ha'dV, (1.18.2.1)
L M| ’ 25— g
p=h'a”0,V-h'(1-p°) '6V,V, (1.18.2.2)

where subscripts denote the partial derivatives. We linearize these equations
about the saddle point and determine A, from the transition matrix as in the
Klein-Kramers case of Section 1.13.6. Thus, expanding the Hamiltonian
V(p,p) as a Taylor series about the saddle point (p. =cos$.,¢,.), we obtain

1 2
V=Vt V8 (p=pe) +205) (p=pc) (=00 )+ Vs (90 ) |
(1.18.2.3)

with the superscript (0) denoting evaluation at the saddle point. We remark,
following Klik and Gunther [120], that the Hamiltonian is defined on a phase
space which is a closed manifold (the space (9, @) is the surface of a unit
sphere) and that a local energy minimum is thus surrounded by two or more
saddle points, depending on the symmetry of the problem. The total probability
flux away from the metastable minimum equals the sum of the fluxes through all
the saddle points. In asymmetric cases, e.g., when an external ficld is applied,
some of these fluxes become exponentially small and may safely be neglected.
The total flux away from the metastable minimum is then dominated by the
cnergetically most favorable path. Now, if the coordinates of the saddle point arc

(¢c» Pc), we have
o

o =(p-p )V +(p-0c )V, (1.18.2.4)
or ()] (0) ‘ ‘
5;;=(P-PC)VW +(p—0c )V (1.18.2.5)

Now, let the saddle point C of interest lie on the cquator p = 0 and makc the
transformation @ - @, —> ¢. Equations (1.18.2.1) and (1.18.2.2) then become in
matrix notation

o)

. -1 - 8
@:’1'[_@4 f:] a;ﬁ ﬁ (1.18.2.6)

op

Thus, the linearized Eq. (1.18.2.6) has the form of the canonical Egs. (1.13.5.4),
and so Langer’s equation, Eq. (1.13.5.29), may be used to calculate the IHD

|
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escape rate. In particular, the transport matrix M and the matrix M (see
Section 1.13.5) are given by

-1 . |
Y AR R Y
a” 1 a’ -1

The equations of motion (1.18.2.6) linearized at the saddle point become

[120]
’ ~ip7(0) (0 ~177(0) _
7 =h' % Vg ~Voo oy, —Vp(;) 14 (1.18.2.7)
P U o _ gy _y©® _ o . .18.2.
pe ov o e J\P
Equations (1.18.2.7) are the noiseless Langevin equations given by Klik and

Gunther; see Ref. [120], Eq. (3.2). The secular equation of Eq. (1.18.2.7) then
(as in Section 1.13.6) yields

7(0) ©) (0) URE ]
T V4V, +\/(Vm +VW] 1+’ [V“”V‘” (V“’))z}
+ - ) ' pPe

= b 2 0&'2 PP op

(1.18.2.8)
The Hessian matrix of the system is

2 4
[ o ”’], (1.18.2.9)
VP‘P V:PP

and the Hessian itself is negative at the saddle point. Thus, to ensure a growing
disturbance at the saddle point, we must again take the positive sign in Eq.
(1.18.2.8). Now the well angular frequency is defined as

w =2 \/V"’ VO Oy, (1.18.2.10)

PP PP

the superscript (7) denoting evaluation at the minimum of well 7, while the saddle
angular frequency is

. \/| yOr® _( (1.18.2.11)
which, with Eq. (1.13.5. 29) leads to the Klik and Gunther result [120]
P =0
F=8"0 g 4T (1.18.2.12)
2re,

This formula demonstrates the wide-ranging uses of Langer’s method and shows
clearly how, once the potential landscape is known, the IHD escape rate may be
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calculated. If we now choose a local coordinate system (¢, p) at the saddle

point, where V,,,= 0, then we obtain a more compact expression for 4,, namely
h' L ;i > 1 el , |

A, =—{ -[rw +V;$’]+J[V‘(" Voo I =42V r® 4 (1.18.2.13)

2 1 PP e

where we observe that the @™ term represents the effect of the precessional

term in the Gilbert equation on the longitudinal relaxation. This mode coupling

effect is always present in a non-axially symmetric potential, as the smallest
eigenvalue of the Fokker—Planck equation will always intrinsically depend on
the damping. This is unlike axial symmetry, where the damping only cnters via
the free diffusion time.

Equations (1.18.2.12) and (1.18.2.13) were also derived from first principles
directly using Kramers’ escape-rate theory, without recourse to Langer’s work,
by Smith and de Rozario [119] and Brown |1 12]. and have been reviewed by
Geoghegan ef al. [78]. In Brown’s calculation [112], the free cnergy density is
diagonalized so that, in the vicinity of the saddle point and minimum,
respectively, we have [78]

V=V, +%(cf”)¢2 +c§“)pz) and V =V, +J2—(cf"’gp: + z:é'"‘]ff (1.18.2.14)

1" and cf” are the coefficients of the second-order term of the Taylor
series of the cxpansion of / at the saddle point, and ¢ and ¢ are the
coefficients of the second-order term in the Taylor series expansion of the

energy in the well. Thus Brown’s IHD result for the escape rate [112] reads

where ¢

Q w P
]ri :#E—‘(fn“‘,)’“
2rew,

_ (1.18.2.15)

where

Q, =%—’[~c,(") — 4+ () -y —4@“%:;‘”4‘”} (1.18.2.16)
is the damped saddle angular frequency (sce Eq. (5.60) of Geoghegan et al. [78],
where a dctailed derivation is given). Obviously Brown's equation, Eq.
(1.18.2.15), coincides with Eq. (1.18.2.12),

We remark that the magnetization reversal time problem differs
fundamentally from that of point particles, because: (i) the magnetic system has
two degrees of freedom, the polar 9 and azimuthal ¢ angles, (ii) the undamped
equation of motion of the magnetization of a single-domain ferromagnetic
particle is the gyromagnetic cquation, (iii) the Hamiltonian is non-separable, and
(iv) the inertial effects play no role. Notwithstanding these differences. the role

i BT
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of inertia in the mechanical system is essentially mimicked in the magnetic
system for non-axially symmetric potentials by the gyromagnetic term, causing
coupling or entanglement of the transverse and longitudinal modes. Hence, in
order to derive escape-rate formulas for superparamagnetic particles equivalent
to those for mechanical particles, one has to consider, in Brown’s Fokker—
Planck equation, a non-axially symmetric free energy density V (%, @), where
explicit coupling between the two degrees of freedom exists. Thus both regimes
of damping (IHD and VLD) can now occur, reflecting the fact that the dynamics
of the transverse response affect the dynamics of the longitudinal response, and
vice versa. This was first realized in 1990 by Klik and Gunther [120]. They
showed that the various Kramers damping regimes also apply to the magnetic
relaxation of single-domain ferromagnetic particles, and derived the
corresponding VLD formula. Furthermore, they also realized that the magnetic
IHD calculations [112, 119] are, as described above, a special case of Langer’s
general treatment of the decay of metastable states of systems with many
degrees of freedom [73]. They therefore understand why Eq. (1.18.2.15), which
is derived for a non-separable Hamiltonian and is the free energy, behaves like
the separable Hamiltonian result, Eq. (1.13.1.18), when the energy loss per
cycle of the almost-periodic, noise-perturbed motion at the saddie point energy
as, >>1. If a8, <<1, one may prove, using'ﬁrst-passage times (details in
[44]), that for the escape from a single well

_y(h-1)
r, =1 259 (1.18.2.17)
27
where
=lT<J[>[ 2o, Vg~ (1-p*)" 5¢Vdp} (1.18.2.18)
. P

is the dimensionless action. Equation (1.18.2.17) is effectively the same as the
corresponding Kramers result for point particles, Eq. (1.13.2.13). The conditions
of applicability of the IHD and VLD solutions for superparamagnets are defined
by ¢ 2 1 and o <<, respectively,

Later, Coffey at al. [44,121] have shown that the Mel’nikov—Meshkov
formalism, connecting the VLD and ITHD Kramers escape rates as a function of
the dissipation parameter for mechanical particles (Section 1.13.7), can be
extended to include the magnetization relaxation of single-domain ferromagnetic
particles having non-axially symmetric potentials of the magnetocrystalline
anisotropy. The equation bridging the VLD and IHD escape rates is given
by [44, 121]
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T, =A(aS)r", (1.18.2.19)

where A(A) is the depopulation factor, Eq. (1.13.7.46), which interpolates
between the VLD and ID regimes. Noting that

A(A)—>1 as Ao and AA)/A—>1as A0, (1.18.2.20)

one may show that Eq. (1.18.2.19) reduces, in the IHD and VLD limits, to Egs.
(1.18.2.15) and (1.18.2.17), respectively.

We remark that Eqs. (1.18.2.15), (1.18.2.17), and (1.18.2.19) may be used to
verify experimentally the Kramers theory for magnetic particles. This has been
accomplished using the sophisticated single-particle measurement techniques
developed by Wemnsdorfer [63]. We further remark that a second interpolation
problem arises in the magnetic version of the Kramers escape rate, namcly how
to join axially asymmetric and non-axially symmetric asymptotic expressions for
symmetry. This problem has been described in detail in Refs. [44,122] by
considering the asymptotes generated by Eq. (1.16.5) for w=0 and = 0. We
emphasize that, in the derivation of all these formulas, it is assumed that the
potential is non-axially symmetric. If the departurcs from axial symmetry
become small, the non-axially symmetric asymptotic formulas for the escape

rate may be smoothly connected to the axially symmetric formulas, by means of

suitable interpolation integrals [44].

We shall also return, in Sections 1.20 and 1.21, to the Kramers theory in
connection with two important effects which occur in bistable potentials. These
are: (i) the effect of a uniform bias force on the relaxation time. and (ii) the
stochastic resonance phenomenon. In the meantime, we shall briefly indicate
how the formulas we developed in Sections 1.15 and 1.18 may be applied to
ferrofluids.

1.19. Ferrofluids

Ferrofluids are [109] stable colloidal suspensions of single-domain magnetic
particles in a liguid carrier. These liquids arc composed of small (~150 A)
particles of ferromagnetic material, coated with a molecular layer of a surfactant,
and suspended in an ordinary liquid. The coatings prevent the particles from

sticking to each other, and thermal agitation keeps them suspended because of

the ensuing Brownian motion.
The simplest model of a magnetic fluid is considered as a gas of non-
interacting ferroparticles suspended in a liquid carrier. The magnetic propertics

|
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of such a system are analogous to those of a paramagnetic gas, i.e., the
magnetization curve is described by the Langevin function, the static
susceptibility, 7, by Curie’s law y~7"', and its dispersion by the Debye
formula
¥o) 1
X - 1+iwrt,’

where 7, is a characteristic relaxation time. In ferrofluids, both Debye relaxation
with the Debye relaxation time 7, (due to mechanical rotation of the fluid
particles; cf. Section 1.15) and Néel relaxation with a characteristic time 7 (due
to rotation of the magnetic moment inside the particle) may occur. Theoretical
studies have assumed [109] for the most part that the Debye and Néel
mechanisms may be ftreated separately, i.e., one has two extreme types of
behavior: (a) the Debye relaxation mechanism, where the Néel relaxation
mechanism is blocked or frozen in the particle, and (b) where the mechanical
rotation of the particles is frozen and only the Néel mechanism is operative. The
overall characteristic relaxation time 7 is then supposed to obey the equation

Ty

7. =

(1.19.1)

T+7,

A popular formula used in analysis, for example, is Brown’s axially symmetric
formula for the superparamagnetic relaxation time 7z, Eq. (1.18.1.16), combined
with the Debye time 7. The relaxation process has been described succinctly in
Ref. [109] as follows:

“There is a finite coupling between the orientation of the magnetic moment p of
a ferroparticle and the position of the particle itself (orientation of its crystal axes).
Without this coupling the moment p would be similar to a compass needle,
where rotation of the instrument frame does not influence the behavior. Because
of the above coupling, the reorientation of the vector p may take place in two
different ways: (1) rotation of p within the particle with respect to its crystal
axes, and (2) rotation of p together with the particle with respect to the liquid
matrix. Both processes — they proceed simultaneously — are of the rotary diffusion
type. The efficiency of the internal (Néel) diffusion of the magnetic moment
strongly depends on particle size, but that of the external one (the Brownian)
depends strongly on the viscosity of the liquid carrier.”

Along with these processes, two other factors are of great importance:

e Polydispersedness of ferrofluids. The actual distribution of the particle size
in colloids results in a moderate (1-2 orders of magnitude) extension of the
Debye relaxation spectrum, and an enormous (up to 13-15 orders!)
extension of the Néel relaxation spectrum. Averaging with a particle-size
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distribution function may change the low-frequency Debye susceptibility
7 (@) unrecognizably.

e Blocking of the rotational degrees of freedom of the particles on
solidification of a carrier liquid. As the liquid matrix freczes, the
suspended particles lose their mechanical mobility. The Debye relaxation
mechanism thus becomes ineffective.

We reiterate that one of the outstanding advantages of the ferrofluid system,
as opposed to polar molecules, as a test of the Debye theory of relaxation, is that
unlike electric dipoles, the ferrofluid particles closely approximate in size to
actual Brownian particles. Thus the conditions for the validity of the Decbye
theory are more closely satisfied by the ferrofluid particles.

Thus, a major development in the theory of ferrofluids would be a model of

particle reorientation which avoids the two extremes of a fiozen Debye or a
Sfrozen Néel mechanism, instead taking account of both mechanisms
simultaneously. Such a development has been inspired [123] by the discoverics
of Fannin er al. [124,125], which suggests that both rclaxation and
ferromagnetic resonance behavior appear in magnetic fluids. The “egg™ model
of magnetic fluids [109, 123], which is a form of the itinerant oscillator model
(and is treated in Chapter 11), represents an attempt to consider the composite
behavior.

1.20. Depletion effect in a biased bistable potential

If we have a random variable, the quantities of interest are its expectation value
and its variance, and, as far as the dynamics are concerned, the autocorrelation
function (ACF) (Section 1.6). The ACF measures the correlation between the
value of a random variable at time /, =0, and its valuc at time £ =1r. It may be
shown from linear response theory [59] (sce Chapter 2, Scction 2.8) that the
decay of the magnetization of a superparamagnet following a small change AH
in the applied field directed along the ecasy axis is M, () =M ,C(r). where
M, =vAHM / (kT) and

C(#) = {cos (0) cos (1)), — (cos (0)) (1.20.1)

Q
is the ACF of the longitudinal component of the magnetization. The zceros on the
angular braces represent the averages in the absence of the small perturbation

AH. Clearly, if we set =0, we have

C(0) = (cos® 9(0)) —(cos 9(0)): . (1.20.2)

4]

oS S S it J



144 The Langevin Equation

This is the variance of the magnetization. Moreover, the process is assumed to
be stationary, which means that the statistics describing the process do not
change over the course of time.

The pertinent property of the ACF is the integral relaxation time 7,, defined
as the normalized area under the curve of C(2), viz.,
. t)d 1.20.3
mt C(O) j. ( ( )

which is identical with the correlation time of linear response theory (see
Chapter 2, Section 2.9). The integral relaxation time includes the contributions
of all the modes of the decay of the magnetization, and so is a global
characteristic of the relaxation process. In order to evaluate 7., we would in
principle have to determine all the eigenvalues A, (k=1,2,....) of the Fokker—
Planck operator (or, equivalently, the eigenvalues of the hierarchy of recurrence
relations generated by the Langevin equation averaged over its realizations),
which may be accomplished by solving the recurrence relations generated by the
Fokker—Planck or averaged Langevin equations. However, in Section 1.18.1, we
have shown how the escape time 7= A" associated with the longest-lived mode
(4, is the smallest non-vanishing eigenvalue) may be derived using the method
of mean first-passage times. Moreover, the integral relaxation time r,, is
virtually identical with the escape time r if the configuration of the system is
such that the contributions of all the other modes, save the longest lived one, are
negligible. In other cases, however, 7,, may differ exponentially from 7, and so
may not be used to estimate the escape time. The two characteristic times, 7 and
7,, have been extensively discussed in Refs. [44, 118, 126-129], and will be
described in more detail later.

Here, it will be sufficient to consider the integral relaxation time in a biased
bistable potential

V(9) =—o(cos® 9+2hcos ) =~ cos® 9— & cos & (1.20.4)

shown in Fig. 1.18.1, as we now describe. Now the population in the shallower

of the two potential wells may be substantially decreased by the application of

the uniform bias force. This has a profound effect on 7., because, at a certain

critical value of the bias force (which is much less than that required to destroy

the bistable character of the potential), a switchover of 7., from Arrhenius to
non-Arrhenius behavior will take place. The effect was originally discovered for

magnetic relaxation in 1995 by Coffey et al. [127] (see Chapter 9, Section 9.3.2)

for the biased uniaxial anisotropy potential Eq. (1.20.4) by numerical solution of
the Fokker—Planck equation (1.18.1.1). The solution of that equation for 7,
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indicated that, at fields well below the critical field at which the bistable
character of the potential is destroyed, the integral relaxation time ceases to be
dominated by the smallest non-vanishing eigenvalue ;. Thus, the escape time 1
no longer dominates 7, for bias fields in excess of a certain critical ficld.
Hence, the contribution of relaxation modes to t,,, other than the barrier-
crossing mode, becomes significant. The effect was later explained by Garanin
[126]. It appears to be a universal feature of the relaxation in biased bistable
potentials [127, 128] (see also [118] for a review). In the analysis which follows,
however, we shall demonstrate, using the magnetic anisotropy potential of Eq.
(1.20.4), that the effect, while dependent on the potential shape, is essentially
independent of the precise nature of the prefactor in the Kramers escape rate,
and may be predicted by the transition-state theory coupled with the definition
of the integral relaxation time and the partition function.

Following the elegant exposition of Garanin [126], we begin our
approximate calculation of 7,
asymmetric bistable potential is a very slow process, and the time dependence of
the PDF is exponentially slow. This quasi-stationary behavior (to all cxtents and
purposes, the behavior of the system appears stationary) allows us to make use
of the partition function to calculate the dynamical quantitics pertaining to the
overbarrier relaxation process, and ultimately to characterize the depletion
effect. If the barrier is high, we may suppose [126, 128] that C(#) is the sum of
the fast relaxation processes in the deep well plus the slow overbarrier process
from the shallower well into the deep well, so that C(r) may be approximated as
(see Chapter 2, Section 2.13)

Clt)y=Aye™'™ +A,e™, (1.20.5)

by recalling that escape over the barrier in an

where Ay, is the population of particles in the deep well and A, ariscs from the
population of particles crossing over the barrier. The relaxation time 7, is
associated with the fast relaxation processes in the well. The inverse of the well
time r;, is approximately equal to [126]

207 (1+h).

This equation holds because all the intra-well modes have approximately the
same relaxation time, which is just the diffusion time divided by the effective
barrier height while A, is essentially proportional to ¢ ™ gee Eq.
(1.18.1.15). It represents the escape rate over the barrier from the shallower of
the two wells.

The simple analytical expression Eq. (1.20.5) may be usecd to determine the

integral relaxation time, whence the depletion effect may be explained using

o TR S ot
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approximate expressions for the partition function. We proceed as follows. We
have, from Eqgs. (1.20.4) and (1.20.5),
1 % Tyl tAR /A

7 om——{Aye™ + A e ) dr
int C(‘O‘) 0( W B ) Aw +AB

(1.20.6)

Because escape over a barrier is a slow process, i.e., few particles escape due to
the height of the barrier, it follows that A, >> A, ; thus we can write

T =Tw +(Ag TADAT . (1.20.7)

Since A, is exponentially large in the high-barrier limit, one would expect that
7, would be dominated by the second term, unless A, /A, has negative
exponential type behavior so that 7, would be dominated by the fast relaxation
time r,. We shall show that this is indeed the case if the reduced field %
exceeds a critical value [126, 128], and we shall further show that the behavior is
independent of the precise nature of the prefactor.

To illustrate this, we will derive an expression for the total population
Ay +4Ag based on our analysis of the ensemble averages using the partition

function. We have, from Egs. (1.20.3) and (1.20.5),
Ay +Ay =(z%), —(2): (1.20.8)
with z=cos 4. We can evaluate (z), and (z’), in terms of the partition

function Z given by

)

7= [ e " g, (1.20.9)
-1
We have [126]
' 2 re
(z)=l§§=§— nd (f):la Z_27 (1.20.10)
Zo& Z ZoE  Z

Substituting these expressions in Eq. (1.20.8), we have the total population

Ay +A, =Z"1Z—(Z'1Z)°. (1.20.11)

The right-hand side of this equation is formally an exact expression for the
variance,

Thus, the vital quantity in calculating averages (and hence the integral
relaxation time), is the partition function Z from Eq. (1.20.9). We shall now
indicate, using the asymptotic results, how approximate expressions for Z may
be calculated for the biased uniaxial potential, Eq. (1.20.1), expressions which of
course hold for potential barrier heights well in excess of k7. We have, from Eq.
(1.20.10) evaluated at the i™ minimum, i =1,2, (see Eq. (1.18.1.8))
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2(9)~ "3 (8). (1.20.12)

We now take the second derivative of the potential, and make the appropriatc
substitutions for the numerator and denominator. Thus we can express Z in
terms of the dimensionless anisotropy and external field parameters o and &
respectively. Because (following Ref. [126])

855V =20 cos 29+ £ cos 9,

evaluating Eq. (1.20.12) at =0 will yield an expression for the portion of the
overall partition function (population) corresponding to the deeper well, which
we call Z, =e”** /(20 +&). If we evaluate Eq. (1.20.12) at 9=z, where the
particles are located in the shallower well, we will find the portion of the overall
partition function corresponding to the shallower well, which wec call
Z_=¢""* /(2o -¢&). The overall partition function, however, is effectively the
sum of these two individual contributions, i.e., Z=Z, +Z_. The asymptotic
method which we have employed is useful since it is difficult to evaluate the
integrals exactly when anisotropy is included, because they are not expressible
as elementary functions. (The exact solution for Z can be expressed in terms of
the error functions of imaginary argument [118]).

The total population A; +A,, can now be evaluated using our high-barrier
approximation for Z,

Ay + A,

z'vz" (720 +2' Y
_ —_[ + -J‘ (1.20.13)

Z+Z. \Z +Z

The essence of our calculation is also to evaluate A, +A,, from our separate
expressions for Z, and Z_. It is important that we are mindful of the fact that
very few particles cross over the barrier once the relaxation process has been
initiated. Therefore, the variance may also be approximately estimated as being
the sum of the variances in each well if it were isolated. The terms in this
expression would not, however, contain any exponentials, as they will always
cancel in a formula such as y'/ y or y"/y, if y is given by a single exponential
term, as 1s so, for each 1solated well. Therefore, the difference between the
the variance calculated by using Z, and Z_ separately gives Ay. Thus, by
determining which terms correspond to Aw, and which correspond to Ay, we can
calculate 7,,, as expressed by Eq. (1.20.6). E.g., consider Z, = 4,¢"**, where
A, = (20 +&)" and 4. =20 —-&)"" represent the prefactors of this particular
system. It is obvious that Z™'Z’ contains exponential factors while the isolated
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well moments Z;'Z, do not. We need not be concerned with the precise form of
A; and A4,, as they will simply be algebraic prefactors for any given system.
We now reach our final result by considering the second term on the right of
Eq. (1.20.13). The relevant representation is
Z,+z!  Z1Z, . Z'lZ

= : (1.20.14)
Z.+Z_ 1+Z_ /2, 1+Z IZ_

If we ignore the irrelevant algebraic prefactors, then it is obvious that
Z/Z =e™ and Z,/Z_=e*.

By using these approximations, we can rewrite Eq. (1.20.14) as
Z,+Z. Z] L Z!
=zttt —

Z, +Z ~ Z zZ’

+

Clearly, if we apply the same method to (Z'+Z"")/(Z, + Z_), we obtain

z/'+z" z! . Z!
=—+e .
Z.+Z Z Z_

+

By substituting these two equations into Eq. (1.20.13), we have our final
expression for A, + Ay, which is

2
z!" (z Z" VAVA
Ay +Ap ==~ =L | =g 20 = o728 (1.20.15)
Z \Z Z. zZ, Z

+ +

We remark that in writing this equation, we have declared an ¢ term small
and irrelevant. Equation (1.20.15) now yields, by inspection, the terms
corresponding to A,, and A,. Clearly, the first two terms on the right-hand side
correspond to the variance in the deeper well, and must then correspond to A,,.
The third and fourth terms of Eq. (1.20.15) must correspond to A, because,
from our initial reasoning, they can only have their origin in the partition
function Z of the entire system and so must be due to the combined effect of the
two wells.
We can thus infer that A, /A, ~e™ =¢™*™, while A"~ (see Eq.
(1.18.1.15)), so that the overalll contr1but10n of the second term is A AL /Ay~
e’ which verifies the analytical result first given by Garanin [126‘]] in 1996
and conﬁmled by earlier (1994) [127] numerical calculations of the integral
relaxation time. Thus, the relaxation time can change its sign from positive
exponential behavior to negative exponential behavior if h,=1/6 = 0.17. Hence,
the overall relaxation time switches from growing exponential behavior
(h<0.17), to being dominated by the (algebraic) first term pertaining to
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relaxation in the deep well. Such behavior, with /. dependent on the precise
form of the potential, appears to be a universal feature of bistable potentials
subjected to a bias force; see Refs. [118, 128]. Another method of evaluation of
the parameters Ay,, A;, and 7, will be given in Chapter 2, Section 2.13.

The depletion effect we have just described is an example of a particular
effect, which arises as a result of the bistable nature of the considered potential.
Yet another effect, which may arise in systems which possess bistable or
multistable states, is the phenomenon of stochastic resonance [130].

1.21. Stochastic resonance

The mechanism of stochastic resonance, which is intimately bound up with the
Kramers escape rate, being rooted in a physical synchronization between the
inter-well (Kramers escape) timescale and the periodic time of the weak a.c.
modulation which acts as an external clock, is relatively easy to explain [130].
We consider a Brownian particle moving in a symmetric double-well potential
V(x) (see Fig. 1.21.1). The thermal forces from the bath cause transitions
between the neighboring potential wells with the escape rate from one well to
the other given, in the heavily damped case (where the energy loss per cycle of a
particle at the saddle point energy is much greater than £7), by Eq. (1.13.5), viz.,

[ = 24P -aviom, (1.21.1)

- 2xf3

1269) V(x) Y(x)

Figure 1.21.1. Double-well potential as used in stochastic resonance [130]. The minima
are located at 4 and B. These two minima are separated by a potential barrier In the
absence of a periodic forcing function (b), the barrier heights AV) and AV, are equal 1o
AV, so that the potential is symmetric. The periodic forcing function causes the double-
well potential to tilt back and forth, thereby raising and lowering the potential barriers
of the right and left wells, respectively, in an antisymmetric cyclic fashion (a and c).
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If we now apply a weak periodic forcing f cosCd of frequency Q, the
double-well potential will be tilted up and down, periodically raising and
lowering the potential barriers AV [130]. The periodic forcing is too weak to let
particles roll periodically from one potential well into the other one, but noise-
induced hopping between potential wells may become synchronized with the
weak periodic forcing [130]. This statistical synchronization takes place when
the averaged waiting (escape) time (cf. Section 1.18.1 above)

7, (kT)=1/T (1.21.2)

between two noise-induced transitions is comparable with half the period
T, =27/} of the periodic forcing. This yields [130] the timescale matching
condition for stochastic resonance, namely

20, (kT) =1, (1.21.3)

Thus, stochastic resonance in a symmetric double-well potential manifests itself
in a synchronization of activated hopping events, with a reaction rate described
by Eq. (1.21.1) in the heavily damped case with the weak periodic forcing [130].
For a given period 7, =27 /Q of the periodic forcing, the timescale matching
condition can be fulfilled by altering the noise level kT, (see Chapter 6,
Section 6.5).

An attractive account of the discovery of stochastic resonance was given by
Gammaitoni et al. in Ref. [130]. According to Gammaitoni et al., the stochastic
resonance phenomenon was first noted by C. Nicolis and G. Nicolis [131] and
* Benzi et al. [132] (details in Ref. [130]) in a discussion of the problem of the
periodically recurrent ice ages. In the model of Benzi et al. [132] formulated in
1981, the global climate is represented by a double-well potential, where one
minimum represents a well temperature corresponding to a largely ice-covered
earth. The small modulation of the earth’s orbital eccentricity (the orbits of the
minor planets are nearly circular) is represented by a weak periodic forcing.
Short-term climatic fluctuations, such as the annual fluctuations in solar
radiation, are modeled by Gaussian white noise. If the noise is tuned according
to Eq. (1.21.3), synchronized hopping between the cold and warm temperatures
(ie., the other potential well) could significantly advance the response of the
earth’s climate to the weak perturbations caused by the earth’s orbital
eccentricity, according to Benzi et al. [132]. A thorough account of stochastic
resonance phenomena in physical and biological systems is given in Ref. [130].
For example, stochastic resonance has been observed in bistable ring lasers,
analog electronic simulators, in neurophysiology, where the firing of
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periodically stimulated neurons appears to exhibit stochastic resonance [130], in
single-domain ferromagnetic particles [133], ete.

For single-domain ferromagnetic particles with bistable uniaxial anisotropy
potential Kvsin® 9, the basic concept of stochastic resonance has been well
described by Raikher and Stepanov [133]. In such a potential in the presence of
noise, a weak alternating spatially uniform field of frequency Q favoring the
transitions between the equilibrium positions at 3 =0, 7 is applied. Under these
conditions the signal-to-noise ratio determined from the spectral density EM (w)
of the magnetization (i.e., the frequency response to the applied field) evaluated
at the frequency Q2 of the weak applied a.c. field, first increases with increasing
noise strength k7, then passes through a pronounced maximum, and then
decreases again. This is the stochastic resonance effect, whereby the periodic
response in both amplitude and phase may be manipulated by altering the noise
strength. For example, on decreasing the driving frequency €, the peak
amplitude of the periodic component of the response of a system moves to
smaller noise strengths [130]. Later (Chapter 9, Section 9.3.3), we shall illustrate
this phenomenon in detail by describing the calculations for such single-domain
particles. The fact that the phenomenon occurs for these particles also indicates
that one would expect stochastic resonance to be exhibited by nematic liquid
crystals, since Néel or longitudinal relaxation of single-domain ferromagnetic
particles in axially symmetric potentials is analogous to dielectric relaxation of
nematics [134].

1.22. Anomalous diffusion

The theory of Brownian motion, which we have described above, is
distinguished by a characteristic feature, namely the concept of a collision rate
which is the inverse of the time interval between successive elementary jumps in
the random walk of the Brownian particle owing to its surroundings; we recall
the words of Einstein [3]:

“We introduce a time interval 7 in our discussion, which is to be very

small compared with the observed interval of time, but, nevertheless of

such a magnitude that the movements executed by a particle in two

consecutive intervals of time 7 are to be considered as mutually
independent phenomena.”

This concept, which is based on a random walk with a well-defined
characteristic waiting time (thus called a discrete time random walk), and which
applies when collisions are frequent but weak, leads to the Smoluchowski
equation for the evolution of the concentration of Brownian particles in
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configuration space. If inertial effects are included (see Note (8) of Ref. [3], due
to Fiirth), we obtain the Klein—Kramers equation for the evolution of the
distribution function in phase space, which describes normal diffusion.

The random walk considered by Einstein [3] is a walk in which the
elementary steps are taken at uniform intervals in time, and so is called a discrete
time random walk. The concept of collisions which are frequent but weak can be
clarified by remarking that, in the discrete time random walk, the problem [5] is
always to find the probability that the system will be in a state m at some time ¢
given that it was in a state » at some earlier time. Referring to the Smoluchowski
integral, Eq. (1.9.1), viz.,

B (X, |x,,1,) = _[ B (%5, | %,1) By (3,8, | 3,8 ) dx,,  (1.22.1)

x; and x3 can only have discrete values n and m, and the time ¢ can only have
discrete values sz with s=1,2,3, .... The discrete form of the Smoluchowski
equation is thus [13]

P(m,st|n,7) = ZkP[k, (s =Dz |n]Q(m, k),

where Q(m,n) = P(m,7|n). It is usual to drop the 7 and just write the equation
as '

P(m,s|n)=Y. P(k,s=1{m)Q(m,k), (1.22.2)

Now

thus
Ok, k)y+2! O(m, k) =1, (1.22.3)

where the prime means that the value m =k must be omitted from the
summation. If we use this in Eq. (1.22.2) and drop the initial value n, we can
write Eq. (1.22.2) in the form of the master equation

P(m,s)—P(m,s —1)=—P(m,s-1) 2, Q(k,m)
+2, P(k,s-1)Q(m,k). (1.22.4)

According to Wang and Uhlenbeck [13], one may interpret this by saying that
the rate of change of P(m,s) with time (where time is given by s) arises from
the “gains” of P due to transitions from k to m, minus the “losses” of P due to
transitions from m to all possible k. This provides a complete analog of the
Boltzmann equation when the molecules of the gas can collide only against
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fixed centers or against other molecules that have a given velocity distribution.
Equation (1.22.4) must be solved for P given an initial distribution for P. Also, a
“mechanism” or “physical cause” (Stosszahlansatz) for the random process must
be given, that is, O must be specified. The initial condition for Eq. (1.22.4) is

P(m,0|n)=P(m,0)=§ (1.22.5)

mn”

This is just the mathematical statement of the fact that the particle was certainly
in state » at the start of the process.

We consider the random walk problem in one dimension. We imagine a
particle that moves along the x-axis in such a way that, in each step, it can move
either A to the right or A to the left, the duration of each step being 7. We wish to
evaluate

P(mA,st|nA) = P(m,s|n), (1.22.6)
which is the probability that the particle is at mA at time s zif, at the beginning, it
was at n A. The fact that the particle is free is now introduced by writing the
transition probability Q as

Q(m, k) = % (8t + iy )- (1.22.7)

If we substitute Eq. (1.22.7) into Eq. (1.22.2), we find that P(m, s) satisfics the
difference equation (dropping the initial state n)

P(m,s)= é[P(m +1, 5=+ P(m—1,s-1)]. (1.22.8)

This must be solved subject to the initial condition Eq. (1.22.5). The solution is
[13]
s!

T Py p——vETTY

(1.22.9)

Equation (1.22.9) is readily verified by substitution into Eq. (1.22.4). Now,
referring to Eq. (1.22.8), if A is the step length and 7 the duration of the step,

1
P(mA, st |nA) = %P[(m +DA, (s=-Dr | nA] +-52— P[(m -DA, (s -7 NA] :
Subtract P[mA, (s~ | nA] from both sides of this equation, so it becomes
o 1 _
P(mA,st|nA)-P[mA,(s-1)r| nA]= > {P‘ [(m=D)A, (s =) | nAl

+P[(m+D)A, (s—1)r|nA]-2P[mA,(s=Nr |nAl}).  (1.22.10)

B |
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Equation (1.22.10) may be written in the equivalent form

PlmA, st [nA]-PlmA, (s -1z |nA] _ A* {P[(m+DA, (s —1)7 | nA]
T 2T ’

=2P[mA, (s =Dz | nAl+ P[(m —DA, (s - )z | nAJ} (1.22.11)

1
E.
Consider a large number of small steps of short duration. More precisely, we
suppose that A and 7 approach zero in such a way that
2
—A—=D, nA = x,, mA — x, st =1.
27
Then Eq. (1.22.11) (by the definition of the derivative) goes over formally into
the partial differential equation
- 2n
5_P=D5 P, (1.22.12)
ot ox*
where P is now written as P(x,t|x,,Z,). This equation is the basis of Einstein’s
theory of Brownian movement. It shows how, in a certain limit, the solution of
the random-walk problem may be reduced to solving a diffusion equation like
Eq. (1.22.12). The conditions imposed on P, the probability density, are

P(x,t]x,)dx=1

g8

and _
%%P(x,tlxu):é'(xexo). (1.22.13)

For convenience, we have taken # = 0. The first condition (1.22.13) is the usual
one that a probability density function must satisfy. The second condition
(1.22.13) expresses the certainty that at 1=0 the particle was at x,. These
conditions imply that

1 —(x=xp ¥ 1(4D¢)

P(x,t]x,) = ——=— g (5 /P (1.22.14)
( 0) 2Nm Dt

Thus the position x (f) of the Brownian particle is a Gaussian random variable

with mean value x, = (x(¢)) and variance

o” =([x(1)-x,1') =2D{|
(for a detailed discussion of random walks see Ref. [135]).

If the foregoing random-walk approach is applied to the orientational motion
of dipoles, as described in Section 1.15, we have seen that the theory describes
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normal relaxation, with the mean dipole moment given by Eqgs. (1.15.16) and
(1.15.17), and the complex susceptibility given by Eq. (1.15.1.2). The 7,, in
these equations means the Debye relaxation time and not the duration of a step.
Thus, the complex permittivity ¢ =&'(@w)—ie"(w) is given by the Debye
equation

sw) =&, +—xCn (1.22.15)

1 +ier,

where &, is the relative permittivity at very high frequencics and &, is the static
permittivity. Moreover, a (Cole-Cole) plot [100] of £"(@) versus £'(w) is a
semicircle with radius

and center on the &' axis at

b

with a maximum when @7, =1. Thus, 7;, may be determined by measuring the
disordered substances such as glass-forming liquids, polymers, and amorphous
semiconductors [136] show very significant departures from Debye behavior. In
addition, the mean-squarc displacements or angular displacements associated
with such transport phenomena are always proportional to a fractional power of
the time, resulting in anomalous relaxation behavior. Such behavior has led to
the description of these anomalous phenomena in the language of continuous-
time random walks (CTRW) (originally [16, 137} mtroduced by Montroll and
Weiss in 1965) which we will very briefly summarize.

First, we reiterate that that the random walk on which the theory of Brownian
motion is based, is one in which the successive jumps in position of the particle
are later at uniform intervals rin time. In the CTRW on the other hand. the times
between the successive steps are themselves random variables [16]. Hence, the
prediction of position at the following step at any given time requires not only a
knowledge of the location (as in the discrete-time random walk) of the random
walk at that time, but also the #ime at which the last step occurred. This
dependence on the state of the system and its past history means that the CTRW
is, in general, not a Markov process [16]. Thus, referring to the quotation of Karl
Pearson given in Section 1.2, the probability that afier n stretches a random
walker is at distance between » and r + dr from his initial point = 0 is a function
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not only of » but also [16] of the intervals T, =£,—t, , between successive steps
of the walk. The concept of the CTRW is essential in the explanation of the
various types of anomalous relaxation behavior of &£(w) which we now
describe. (A more detailed discussion of the CTRW is given in Chapter 12; see
also [10, 18, 39]).

1.22.1. Empirical formulas for the complex dielectric permittivity

From almost the earliest days of dielectric relaxation measurements [100],
marked departures from the form of £(w) predicted by the Debye equation have
been observed. The best-known empirical formulas, which have been used to
describe such experimental data, are (a) the Cole-Cole equation [100]:

£~ 0<o<1), (1.22.1.1)

s(@)=¢&, +———,
I+ (wr,)”

which again produces a circular arc (however, the center lies below the
horizontal axis), (b) the Davidson—Cole equation [100]:

f@=e,+—2"% _ (<y<, (122.1.2)
(I+iwzy)”

which produces a skewed arc, and (c) the Havriliak-Negami formula, which is a
combination of the Cole-Cole and Davidson—Cole equations [100]:

kN (1.22.1.3)
[1+(iwz, )" ]

ewy=¢,_ +

Each of these empirical formulas exhibit anomalous relaxation (i.e., departures
from the Debye pattern) behavior. Just as in the Debye case, our task is to
provide a theoretical justification for them. Before illustrating this using an
approach based on the CTRW, we demonstrate how the above equations
naturally give rise to a distribution of relaxation mechanisms. This idea,
originally advanced by von Schweidler and later by Wagner [100], is in the
notation of Frohlich [117]

£(@)-¢, =f @ 4, (1.22.1.4)
Eg — &, s 1+iwr

This is a superposition integral and embodies the idea [100] that the dielectric
behaves as if it were a collection of individual Debye time mechanisms with
relaxation time 7 and distribution function f(z). One may show [100] that, for
the Debye equation, Eq. (1.22.15),
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Jo(@)=6(r—1y). (1.22.1.5)

Thus only one relaxation mechanism is involved, as is obvious by definition,
while for the Cole-Cole equation, Eq. (1.22.1.1),

sin 7o

7)= - , 1.22.1.6)
Jecl?) mrl(r/7,) +(z/7,)° +2cos o] ( )
and for the Davidson—Cole equation, Eq. (1.22.1.2),
f(0)= {(mr)'] (rp/T=1)"sinzv, 7<7y, (1.22.1.7)
0, T > 1Ty,
and for the Havriliak—Negami equation, Eq. (1.22.1.3),
(r/7,)" |sin (v arctan {[(r /7,) +cos o] sinm} )l

S (7) = — (1.22.1.8)

7t(z/ 7)) +2(¢ /1 )° cos zo +1]

Thus, the anomalous relaxation behavior may be characterized by a
superposition of an infinite number of Debye-like relaxation mechanisms, with
the relaxation time distribution functions given by Egs. (1.22.1.6)-(1.22.1.8).
For the cases considered, these empirical equations take no account of high-
frequency effects such as those due to the inertia of the molecules. These will be
considered later in the context of inertia corrected anomalous relaxation [138].
We shall now illustrate how the empirical anomalous relaxation equations
described above may be theoretically explained [139] by invoking a CTRW
description, in which each step of the random walk occurs at a random time,
chosen from a random distribution of waiting times (replacing the fixed uniform
waiting time 7 of the Einstein theory) so broad that it does not possess a
characteristic timescale. In other words, the mean waiting time is divergent. The
origin of the phenomenological parameter o, taking the Cole-Cole equation, Eq.
(1.22.1.1), as an example, must be sought in this “fractal time™ waiting-time
distribution.

1.22.2. Theoretical justification for anomalous relaxation behavior

The fact that the temporal occurrence of the motion events performed by the
random walker is so broadly distributed that no characteristic waiting time
exists, has often been exploited [139] in order to generalize the various diffusion
equations of Brownian dynamics to explain anomalous relaxation phenomena.
The resulting diffusion equations are called fractional diffusion equations,
because in general they will involve fractional derivatives of the PDF with
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respect to time. For example, in fractional diffusion, the simple Einstein
equation for the Brownian motion of a free particle, Eq (1.4.8), becomes (see
Chapter 12, Section 12.2)

‘ 2
2_";’:(?] ;2 D\ P, (122.2.1)

where o is the anomalous exponent, the fractional derivative ,D)™ is given
(the Riemann-Liouville definition) by [139, 140, 141]

- _0 ”
oD =5§0D, (1.22.2.2)
in terms of the convolution (recall Cauchy’s integral formula [142])
t P(x,t dt’
D P(xt{x%)=—— | (x lfz , (122.2.3)
F( )o  (e-t)

I' (z) denoting the gamma function [143]. Equation (1.22.2.1) with 0<a<1
describes slow diffusion or subdiffusion, and with 1 < c<?2 describes enhanced
diffusion or superdiffusion (c=2 defines the ballistic limit); normal diffusion
occurs when o=1 (see Chapter 12).

The derivation of fractional diffusion equations such as Eq. (1.22.2.1) hinges
on the observation (cf. Ref. [141], p. 118) that fractional diffusion is equivalent
to a CTRW with waiting time density w(r) given by a generalized Mittag—
Leffler function (see Section 1.22.3 below and also Refs. [139] and [141]). The
fact that w(f) is given by a generalized Mittag-Leffler function amounts to
assuming an asymptotic (long-time) power law form for the waiting time PDF,
i.e., considering slow diffusion,

w()~ A4, %7, (0<o<l), - (1.2224)

(4, 1s a constant). The characteristic (mean) waiting time
Ty )= [tw(t)at (1.22.2.5)
0

then always tends to o except in the limit o— 1 (the classical Brownian
motion), where

W(t) = ‘5‘('! -7),

so that the mean waiting time (T, ) =1.
A famous example [18] of a distribution function with a long-time tail like
Eq. (1.22.2.4) is the Cauchy distribution
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w(t) = e ]l

5 1.22.2.6)
T al+1 ( )

with infinite second moment. This distribution is just one example of a whole
class of distributions which, if applied to a sum of random variables, do not
converge to the Gaussian distribution as the number of random variables tends
to infinity. Thus, the central limit theorem, on which the theory of Brownian
motion rests, s not obeyed because the long-time tails preclude convergence to
the Gaussian distribution. Nevertheless, limiting distributions (now called Lévy
distributions; see Ref. [18], Chapter 4) may exist (see also Chapter 12).

The divergence of the waiting time associated with the long-time-tailed
nature of the waiting time PDF, Eq. (1.22.2.4), is, according to Mectzler and
Klafter [139] a manifestation of the self-similar nature of the waiting-time
process. This has prompted many investigators to use, in the present context, the
term fractal time processes to describe anomalous relaxation. Returning to the
fractional diffusion equation, Eq. (1.22.2.1), that equation will now follow from
Eg. (1.22.2.4) and CTRW theory. This is so because (see Ref. [141], p. 118) the
integral equation for the PDF f(x,f) for a continuous-time random walker to be
in a position x at time ¢, starting from x =0 at =0 with waiting time density
given by Eq. (1.22.2.4), is equivalent in the diffusion limit to the fractional
diffusion equation, Eq. (1.22.2.1). We illustrate this in Chapter 12.

We remark that postulating w(f) as a generalized Mittag-Leffler function
with long-time behavior given by Eq. (1.22.2.4), so that fractional diffusion may
be described as a CTRW, is (just as with the postulate of the existence of a

Brownian movement) equivalent to a Stosszahlansatz for the Boltzmann
equation, which must of necessity underpin the entire theory. In other words, the
transition probability or “mechanism” of the fractional diffusion process is that
of the CTRW. In Chapter 12, we shall see in detail how a waiting-time PDF of
the form of Eq. (1.22.2.4) allows one to generalize the Klein—Kramers equation
of normal diffusion to fractional diffusion. We shall also demonstrate how the
anomalous diffusion problem may be treated within the framework of the
generalized Langevin equation or memory function formalism due to Mori,
reviewed in Ref. [98]. The memory function formalism is attractive in the
context of fractional diffusion, as it quite clearly underlines its non-Markovian
nature. Furthermore, the CTRW provides a microscopic model, justifying the
introduction of particular memory functions into the Mori theory, which may
describe anomalous diffusion. In the meantime, we will confine ourselves to the
fractional diffusion equation in configuration space (here a gencralized
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Smoluchowski equation) for an assembly of rigid non-interacting dipoles.
Moreover, we shall demonstrate how that equation yields [144] the Cole—Cole
equation, Eq. (1.22.1.1).

1.22.3. Anomalous dielectric relaxation of an assembly of dipolar molecules

In the fixed-axis rotation model of dielectric relaxation of polar molecules, a
typical member of the assembly is a rigid dipole of moment p rotating about a
fixed axis through its center. The dipole has moment of inertia 7 and is specified
by the angular coordinate & (the azimuth), so that it constitutes a system of one
(rotational) degree of freedom. The fractional diffusion equation for the time
evolution of the PDF W(#,f) in configuration space is then the same as that
previously written, Eq. (1.22.2.1), for a particle of one translational degree of
freedom. However, rotational quantities replace translational ones and a
potential energy term V(&) is added, so that

[ 2
ipﬁ:f{f L_G_(QK]_]_L DWW, (1.22.3.1)
ot kT 00\ 00 ] 386°

Here 7, =¢/(kT) is the Debye relaxation time, which is identified with the
inter-trapping time, and V(8)=-uFE, cos@ is the potential arising from an
external d.c. electric field Eo. The operator ;D)™ is given, as before, by the
Riemann-Liouville definition, Eq. (1.22.2.3), meaning that Eq. (1.22.3.1) now
contains a slowly decaying memory function with a power law kernel, so that
the process is no longer Markovian and so depends on the history of the system.
We consider the after-effect solution of Eq. (1.22.3.1), where a d.c. field E,,
having been applied to the assembly at a time ¢=-co0 so that equilibrium
conditions prevail by the time =0, is switched off at z=0. In addition, it is
supposed that the field is weak (uE, << kT'). Thus, Eq. (1.22.3.1) becomes, for
t>0

ow e ‘
— =% 5(9-2( D). (1.22.3.2)
Equation (1.22.3.2) must be solved subject to the initial condition
E
w(6,0)= L 1+ 229 cos 6 , (1.22.3.3)
2 kT

where 27 is the normalizing constant. Just as with normal diffusion, the form of
the initial condition, Eq. (1.22.3.3), suggests that the time-dependent solution
should be |
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W(H,t)H_L( ] (1.22.3.4)
yielding the fractional differential equation for g(¢), viz.,
%g(f) =-177 D7 g(t) (1.22.3.5)
with solution [139]
g)=E [-(t/75)° ], (1.22.3.6)

where £_(z) is the Mittag-Leffler function defined by [139, 141]

"

E_(z)= Z; Tirom’ (1.22.3.7)

The Mittag—Leffler function interpolates between the initial stretched
exponential form [139]

E [t/ 7)) ]~ e W) T (1.22.3.8)
and the long-time inverse power-law behavior [139, 141]
E [-@t/t,) 1~ (/7,)° /T(1-0). (1.22.3.9)
The Debye result for g(f) corresponds to =1, viz.,
E(~t/ty)=e"™, (1.22.3.10)
Now the mean moment due to orientation alone is given at any time 1> 0 by
2r
(n-e)(t)= [#cosewm,nda (1.22.3.11)
0
(e is a unit vector in the direction of Ey), so that with Eq. (1.22.3.4) we have
2
(n-e)(t)= ‘;k‘? E_[~(t/7y)" ], (1.22.3.12)

in contrast to the Debye result embodied in Eq. (1.15.16).

A practically much more important result than that treated above is the
stationary response to a weak periodic field E(r) = E,e™ [144]. This responsc is
characterized by the complex susceptibility y(@), which may be obtained from
the after-effect solution, Eq. (1.22.3.12), using linear response theory (sce
Chapter 2, Section 2.8). Hence

1) = 7 O)-i0f b, (1223.03)
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where b(f) =N, (n-e)(¢) is the after-effect function and N, is the concentration
of the dipoles. (In using this theorem, we note [39] the non-stationary nature of
the Stosszahlansatz or mechanism, underlying the fractional dynamics).
Equation (1.22.3.13), with the after-effect function h(#) given by Eq. (1.22.3.12),
yields

-

X(®) = H N, {1 - z'a)T E_[-(t/z;)" 1e7™™ a’t}

2kT

2
AN 1 (1.22.3.14)
2kT 1+ (iwry )

because the one-sided Fourier transform of the Mittag—Leffler function

E_[-(t/7;)7] is[139,141]
' 1

o+t (iw)™

The calculation may be carried over to rotation in space [144]. Here, the
space coordinate is ¢ (the colatitude) and the fractional diffusion equation for
the PDF W (:9,1) becomes (see Eq. (1.15.13))

ow =77 l i{sin 3%:' WD W, (1.22.3.15)

& ° 2sin989
where 7, =¢/2kT is the Debye relaxation time for rotation in space. It is now

apparent that Eq. (1.22.3.15) may be solved, just as Eqs. (1.22.3.2), for rotation
about a fixed axis, yielding

(n-e)(n)= ‘;k‘?" E, [—(t/rD)”], (1.22.3.16)
2(@)=£ L ! (1.22.3.17)

3T 1+(iwr, )"

As in normal diffusion, Eqgs. (1.22.3.16) and (1.22.3.17) differ from the
corresponding one-dimensional analogs, Egs. (1.22.3.12) and (1.22.3.14), only
by a factor 2/3 and the appropriate definition of z,,. Hence, the Debye theory of
dielectric relaxation based on normal diffusion may be generalized to
anomalous diffusion.

This concludes our long discussion of the various applications of the theory
of Brownian movement, serving as both an introduction to and as a motivation
for the study of its various detailed aspects.
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CHAPTER 3

BROWNIAN MOTION OF A FREE PARTICLE AND
A HARMONIC OSCILLATOR '

3.1. Introduction

In this chapter, we treat the translational Brownian motion of both a free particle
and an oscillator. The appropriate Langevin equations are

mi(t)+ Cx(t) = F(t) (3.1.1)
for a free particle, and
mi () + & x(t) + ma x(t) = F (1) (3.1.2)

for a Brownian oscillator, where x(¢) specifies the position of the particle or
oscillator at time ¢, m is the mass, % is the viscous drag experienced by the
particle, @, 1s the oscillator frequency, and F(¢) is the white-noise driving
force. We also consider the rotational analogs of these two models, namely, a
free single-axis rotator and a torsional oscillator. The corresponding Langevin
equations are

T6(t) + () = A(r) (3.1.3)
for a free rotator, and
16(1) +6(t) + 1 0(t) = A(r) (3.1.4)

for a torsional oscillator, where @ is the angle of rotation, 7 is the moment of
inertia, while ¢6(s) and A(f) are the viscous drag and white-noise driving
torques, respectively.

The common feature of all these models is that the Langevin equations
(3.1.1)~(3.1.4) are linear, so that the calculation of observables is relatively
simple. Detailed treatments of various aspects of the models are given, e.g., in
Refs. [1]-[6] and [6]-[10] for both the translational and rotational Brownian
motion. Some properties have already been considered in Chapter 1 (see
Sections 1.3 and 1.11).

We now show how observables may be calculated from the Langevin
equations, Eqgs. (3.1.1)~(3.1.4). Applications of the models to the phase diffusion
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in magnetic resonance imaging [11] and to dielectric relaxation [12] are also
discussed.

3.2. Ornstein—Uhlenbeck theory of Brownian motion

The formula for the mean-square displacement ((Ax)*) of a Brownian particle
in a time interval 7 derived by Langevin [1] and Einstein [4], namely,

(Ax)*)=2kT|t|/&, (3.2.1)

has (as we discussed in detail in Chapter 1) the fundamental flaw that it is not
root-mean-square differentiable at t = 0. We have also seen that this is a direct
consequence of ignoring the inertia of the particles. In 1930, Uhlenbeck and
Ornstein [2] derived, by including the inertia, the famous formula for ((Ax)*)
originally given by Ornstein and Fiirth in 1918 [4] (cf. Eq. (1.5.10.5))

((Ax)? >—2§Tm (~| |- 1+e"4"f"mj, (3.2.2)

which, for times ¢ >>m / £, reduces to Eq. (3.2.1), and for short times becomes
((Ax)*y = (kT | m)¢*.

Thus {(Ax)*) is now mean-square differentiable.

In this section, we show how Eq. (3.2.2) may be derived from the point of
view of the Omstein—Uhlenbeck theory. Thus we follow the method of Section
1.7, writing the Langevin equation in phase space (x, v), as

@) =v(@), mv(t)=-Cv(E)+F(), (3.2.3)
where we designate the white-noise driving force as F(f) with
F(t,)=0, F(1,)F(1,)=2¢kT5(t, ~1,). (3.2.4)

It is again assumed that the particle starts off at a definite phase point (Xo,vo), S0
that the state vector has components

x(t) = x, +%(1——e‘ﬁ’ )+— [(1-e7") F@yar, (3.2.5)

A
mp

e PP )dr (3.2.6)

1
W(t) = x(t) = ve™” +—
m

D Cmmny, = c!‘—.—.-—.

(here = ¢/ m). Hence

— J[ [1-e70 [ F(e)ar.

=x(t)—x0=:;(l e—ﬂt)-f"m )



Brownian Motion of a Free Particle and a Harmonic Oscillator 231

Now
E:%(n-e*ﬂ'), (3.2.7)
W — _2;?(1 e )‘2 . mzlﬁ: j-j- [] P :I J:] e ] FOVF di'de”
o (4]
= %(1 - -’" ‘j’:‘; £ { [1 e M "][1 —er’““"-’] S =1 dt'dt". (3.2.8)
Since
j&(r"—r')»[l—c‘/’“"‘]dr e (3.2.9)
0
we have, from Eq. (3.2.8),
(_AT)‘{ = h};(—:’- (l ~e )\: + —z—c—i;j[l S FORALRROLT A ]d!"
- m ) i
= %‘—(l —e ): I%} + ;iq [ -3+ dertr ot w] (3.2.10)

This is the solution in the case where the collection of particles started off with
the definite velocity vo. If we have a Maxwellian distribution of initial velocities
vo, L.e., m{yg )/ 2=kT /2, we find from Eq. (3.2.10) that

(A = 24T

(/)’i +e M), (3.2.11)

which is the Ornstein-Fiirth formula, Eq. (3.2.2) |2]. For long times, the term in
t 1s the only sigmficant one, so that we obtain the mm of Langevin [1] and
Einstein [4], Eq. (3.2.1). We reiterate that ((Ax))'™ from Eq. (3.2.11) is non-
differentiable at =0, so that in the non-inertial umppm\mm ion, the uluum‘
does not exist. If incrtia is included. however, ((AYY')'7 is differentiable at
t =0 and the velocity exists. This question, first emphasized by Doob [13], was
discussed in Chapter 2.

3.3. Stationary solution of the Langevin equation: the Wiener-Khinchin
theorem

We have illustrated the caleulation of the averages from the Langevin equation
for sharp initial conditions. The solution of the Langevin equation for a free
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particle subject to a Maxwellian distribution of velocities is called the stationary
solution. Clearly, for the stationary solution

kT

(VY= (3.3.1)

m .
as the velocities are in thermal equilibrium. The relevant quantity is the velocity
correlation function. The stationary solution may be found by extending the
lower limit of integration to —o and discarding the term in v in Eq. (3.2.6).
Thus, for distinct times # and £, we have

v(t)=m _[ ME@dr, v(,)=m" [ PEFEYd" (33.2)

so that

fi 4

(v(1)v(t, )):i2 [ [ et == (Fanren)ardr:

—00 —t0

2 kT 't =B+t~ -t
78 j j Ptss) s (17— ) di'dy” = KT gpiesi, (3.3.3)
m’ m
The modulus bars must be inserted in order to ensure a decaying covariance.
This 1s the velocity autocorrelation function (ACF) of a free Brownian particle.
Noting that

—;%(A.x)z =20x(0v(f), Ax(t)= jv(u)du, 334

0

the mean-square displacement ((Ax)*) may be found using the formula
() =2[ [{(w(t"yw(w)) du dt’ = 2[(t-u) (WO du  (33.5)
Q0 i}

yielding the same result as before, Eq. (3.2.11).

Now the velocity ACF may also be computed using the Wiener—Khinchin
theorem. Following Ref. [3] closely, consider, for a very long time T, a wide-
sense stationary random process; that is, a process in which the average of the
product £(£)&(t+7) depends only on 7 (> 0), where we specify the process by
the real-valued random variable &(f) which is a causal function of the time ¢
(see examples in Ref. [14]). We now form

T'I2

%ﬂiﬂ—%—, [ cwar, (3.

-T2
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i.e., the time average of £(¢) over an infinitely long time period. We may also
define the ACF C(7) as

T2

C,(7)= 5(t)§(t+r)-—hm——1— [ enea+oyan (3.3.7)

-T2

However, the ensemble averages (i.e., the average behavior of a huge ensemble
of such stochastic systems observed simultanecusly) and time averages are now
equal (ergodic theorem), viz.,

Ce (1) = (EOE( + 1)) = EDET+ 7). (3.3.8)

Since
40 - j E(w)e dew and E(w) = J E(De™™ d, (3.3.9)
27 e =

we have, using the shift theorem for Fourier transforms,

| dw T . ~ dw
C,(7) = hm— @)e™ e e Yy 3.3.10)
(r)= Jjﬂjf( e J E(w)5 (3.3.10)
Because
] I YN Cr ]
— i ey = S(x), (3.3.11)

C, (1) ZThj}m%J. j é(m;i((u) (@, +@)dodo
=71jmTi | () (~w)e " d w. (3.3.12)

Finally, since £(f) is a real causal function of 7, so that &(—w)= f'(m’), we
have

o)

C.(r) = _l- J' D, (m)@”“"’dm, (3.3.13)
: 2z 0 "
where
P, () = lim |E@)] /7" (3.3.14)

is the spectral density of the random variable £(1). Since D, (w) 1s an even
function of w, we will also have

o)

C(r)= %Jd{ (w)coswr dw. (3.3.15)

0
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By Fourier’s integral theorem we also have

@, (o) = j C.(r)e' dr =2 j C, (7) cos oz dr. (3.3.16)
—0 1]

This 1s the Wiener—Khinchin theorem [11], namely, for a wide-sense stationary
stochastic process the spectral density is the Fourier cosine-transform of C (7).

We illustrate the use of the theorem by evaluating the velocity ACF of a free
Brownian particle from the spectral density of the velocity v(f). The velocity
v(#) 1in the Langevin equation, Eq. (3.2.3), is a Markov process. Since the
Fourier transforms of v(f) and the random force F(f) are

(@) = T v()e dt and F(w) = T F()e™ dt, (3.3.17)

we have, from Eq. (3.2.3),
o) =— g(a))ﬁ(a)), (3.3.18)

where y(w)=(f+iw)” is the transfer function of the system [14]. Now the
spectral density of the velocity v(z) is

(@) = lim ()" () / T",

so that, with Eq. (3.3.18), we have

D, (w) D, (@) (33.19)

O, (w) = ;r(w):t' (@) > B ra?)

Since the spectral density of the random force F(¢) is given by
®, (@) =25 kT j 8(r)e™ dr =20k,
we obtain ‘
20k 1
m* p*+a’ .

Substituting Eq. (3.3.20) into Eq. (3.3.13), we then have

D (@)= (3.3.20)

kKT T €”dw  2PkT $ coswr
{(v(tyv(t+7)) = ; [ = £ [ dw.
m L +w Tm \ f+ @
Using
}Fcosm =T
‘ﬂ‘ 1+ x* 2



Brownian Motion of a Free Particle and a Harmonic Oscillator 235

we finally have

(v(t)v(t + r)) = He‘”‘”. (3.3.21

m
This 1s the velocity ACF as obtained by the Wiener-Khinchin theorem. The
calculation of correlation functions based on this thcorem is often known as
Rice’s method [3].

An example of applications of the free Brownian particle model is the
incoherent scattering of slow neutrons in liquids [15, 16]. Another important
application is diffusion magnetic resonance imaging (MRI) [11], which we
discuss briefly in the following section.

3.4. Application to phase diffusion in MRI

The clinical applications of diffusion MRI are numerous. Changes in water
diffusion in tissues have been associated with alterations in physiological and
pathological states [17]. During signal acquisition in MRI, nuclear magnetic
moments are manipulated via a combination of static, gradient, and
radiofrequency magnetic fields. These fields and their relative timing (or pulse
sequences) can be varied in many ways in order to create image contrast based
on characteristics of the medium, tissue or pathology. In addition to varying
tissue contrast, flowing, diffusing and perfusing spins can be encoded in the
image signal.

The precession and relaxation of the net magnetization, due 1o the spin
manipulation, is described by the phenomenological Bloch equations [18).
Bloch proposed, in his phenomenological treatment of nuclear induction, the
differential equation for the time dependence of the nuclear magnetization M(r)
under the influence of an external magnetic ficld H(r), viz.,

. .M. M, - M
M:nyH—iM-‘—jM’ -k
o T

: (3.4.1)

where y is the gyromagnetic ratio of the nuclei under consideration, and i. j,
and K are the usual triad of unit vectors along the Cartesian axes. The external
field H(¢) has the form

H(1) = kH, + H, (1), (3.4.2)

where H, is strong and constant while H, is rclatively weak and an arbitrary
function of time. M, is the equilibrium magnctization in the ficld H, and the
establishment of thermal equilibrium is in Eq. (3.4.1), described by two
relaxation time constants 7, and T,, the longitudinal and transverse relaxation
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times, respectively, meaning that in the absence of the transverse field H,, the
X and Y components will vanish with a time constant 7,, while the equilibrium
magnetization will be attained with a time constant 7,. To study relaxation, we
suppose that H, is zero while Hj is slightly altered in order to induce relaxation.
The Bloch equations then become '

. M M M, —M
M=y(iM H,—iM H)-i— - j—L -k—=£ 0
7( yddg — JM 0) T, JTZ T

(3.4.3)

Clearly, the transverse (M ,,M,) and longitudinal (M,) components of M
decouple in the absence of H,. Thus, forming the complex variable

M, (0) = M, (1) +iM, (1),

we then have

. M
M, =-iyM H,——+. (3.4.4)
I
The solution of this differential equation, following perturbation of the constant
field H,, is simply

M (t) =M (0)e ‘™% (3.4.5)

where @, =yH, is the Larmor precessional frequency. Equation (3.4.5)
represents a decaying oscillation. In practice, H, is not constant in space, and
so it has a field gradient defining the magnitude of the field at the site of a
nucleus which 1s represented by the position vector r(¢),

H(r,t)=r(t)-VH(z,1) =r(t) - G(z,?). (3.4.6)
Hence the solution, Eq. (3.4.5), alters to

1
T, =iy § v(#'y Gzt ydt'

M (r,t)=M (r,0)e 0 . (3.4.7)
Clearly, the transverse magnetization is now a function of the position of the
nucleus.

Equation (3.4.7), however, omits the Brownian motion of the particles in the
liquid, which carry the nuclei. This must be taken account of in resonant
imaging. In liquids, the positions of the molecules r fluctuate as a result of
Brownian motion (Schwankung), so that the Larmor precession is affected,
causing dephasing of the resonance signal. Thus if r(¢) is a stochastic process,
Eq. (3.4.4) becomes the stochastic differential equation,

M, (1) =—[iyr(®)-G@) +1/ )M, (1), (3.4.8)
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which now represents the Langevin equation of the process. Thus, the time-
varying field r(¢)-G(¢) at the site of a nucleus must now also constitute a
stochastic process, because of the haphazard nature of the position vector r. This
causes phase fluctuations, viz.,

AD() = jw(ﬂ) di' = ;/j r(t")-G@1")dr" (3.4.9)

Thus the dephasing A®(¢), owing to the thermal motion of the nuclei bearing
the magnetic moments, is obtained by calculating the mean value of the
functional (em > , where

AD =—y j i(t, )jG(z')dx dr,. (3.4.10)
0 0

Equation (3.4.10) is obtained by integration by parts from Eq. (3.4.9), by
imposing the so-called “rephasing condition”

jG(r')m' = 0.
0

Dephasing due to random modulation of the Larmor frequency, (1), was first
observed by Hahn [19], who noted the attenuation of the observed transient
signals in NMR experiments as a result of the self-diffusion of “spin-containing
liquid molecules.” Clearly, the calculation of (e’“‘*’ merely amounts to
determining the characteristic function of the centered random variable Ad.
This is particularly easy for centered Gaussian processes, because then one may
write, following Sections 1.6.3 and 3.6 (below),

(") = e (3.4.11)

Thus, if we regard the particles carrying the nuclei as free Brownian particles,
we can determine the dephasing by means of Eq. (3.4.11),

Numerous attempts have been made to incorporate the Brownian motion of
the liquid nuclei, e.g., [19, 20, 21]. The treatment of Carr and Purcell [21]
(effectively Einstein’s theory, as in Chapter 1, Section 1.4, adapted for phase
fluctuations) assumes that a nucleus in a liquid executes a discrete-time random
walk, owing to the cumulative effect of very large numbers of impacts from the
surrounding particles, so that the phase is a sum of random variables cach
having arbitrary distributions. The only random variable is the position of the
walker, i.e., the direction of the jump-length vector (Chapter 1, Section 1.4), as
(a) it has finite variance and (b) the waiting time between jumps has finite mean.
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The problem is always to find the probability that the walker will be in state n at
some time 7, given that it was in a state m at some earlier time; this gives rise in
general to a difference equation ([3, 22]; see also Chapter 1, Section 1.22).
However, by the central limit theorem (Chapter 1, Section 1.6.4), the dephasing
effect may be calculated explicitly in the continuum limit of extremely small
mean square displacements in infinitesimally short times. The above analysis
was later much simplified by Torrey [23]. He avoided the problem of explicitly
passing to the continuum limit by simply adding a magnetization diffusion term
to the transverse magnetization in the Bloch equations (following Einstein, as in
Chapter 1, Section 1.2), resulting in a partial differential equation, now called
the Bloch-Torrey equation [24,25]. Moreover, by the introduction of
appropriate boundary conditions, this equation is ideally suited to describing
restricted diffusion in a confining domain [25]. The Bloch-Torrey equation may
be solved for nuclei diffusing freely in an infinite reservoir. Thus Torrey [23]
obtained for the dephasing, following the application of a step gradient of
magnitude G in a liquid characterized by a diffusion coefficient D,

<em¢ > = A(f)/ A(0) = e DY e (3.4.12)

Moreover, for a simple bipolar gradient-echo experiment, with gradients of
strength G and duration 7,

(€)= AQ2r)/ A(0) = ™", (3.4.13)

The spin-echo diffusion experiment case is slightly different [26]; the
calculations are considerably more involved than in the gradient echo case,
where the second gradient pulse has the effect of resetting the dephasing caused
by the first pulse. By applying the 180° pulse in the spin-echo experiment, the
phase is reset by double the extent to which it was advanced [26], so that

(\ 2P )SE _ e-—DyzG"’b"z(A—é'/B) , (3.4.14)

where & is the gradient spacing and A is the time interval from the starting
time of the first gradient to the starting time of the rephasing gradient. Iz follows
that the diffusion coefficient D can then be measured via the amplitude of the
echo signal from nuclear spins, subject to an appropriate sequence of magnetic
field pulses. Now Egs. (3.4.9)-(3.4.14) describe the signal loss due to the
translational motion of the magnetic moments in unrestricted (free) water in a
magnetic resonance experiment. The equations have their origin in the work of
Bloch [18], which is the starting point of our treatment of dephasing.
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In order to illustrate the calculation of the dephasing from the Langevin
equation, we consider for simplicity the Brownian motion of a free particle
along the x-axis. We first derive Eq. (3.4.12) for the phase diffusion which
corresponds to the non-inertial limit, where the inertia of the particle may be
ignored. Here the Langevin equation is simply

gx(t) = F(2), (3.4.15)

where x(z) 1s the coordinate of the Brownian particle (nucleus), and F(¢) is the
usual random force with white-noise properties. Equation (3.4.15) follows from
the inertial Langevin equation, Eq. (3.2.3), for the velocity v(¢) = x(f) of the
Brownian particle of mass m by neglecting the inertial term.

According to Eq. (3.4.10) the non-inertial Langevin equation for the phase
d(2) is

D(t) = ()| Gt)at' = —yg-‘F(t)j G(t") dt", (3.4.16)

These equations simply state that the only way the phase can change is via the
equation of motion of x(t). In the Brownian motion of a free particle, the phase
@(¢) is a centered Gaussian random variable with variance ¢* = (AD?) = (D?)
since (@) =0 and ¢, =0. Noting that

(1) = zjq:»(t, Yo, )dr,, (3.4.17)

because we may take ®(0) =0, we have for a step field gradient

L]

(a0*)=27°¢7 [ [[ Gt dt'T G(t")dt" (F(t,)F(t,)) dt,dt,

000

!

Y 2
= 2D;/2J'[ | G(t”)dt”} dt, = %Dyzc}‘zﬁ, (3.4.18)
0L0

where D=kT /¢ is the diffusion coefficient which is, as usual, defined via the
mean-square displacement of the Brownian particle in a time interval ¢, Hence,
from Eq. (3.4.11) we have the known result Eq. (3.4.12) for the dephasing
following the application of a step gradient.

The gradient-echo result Eq. (3.4.13) may be obtained in a similar way. For
the spin-echo case, Eq. (3.4.14) may be obtained by writing the lefi-hand side of
Eq. (3.4.18) as {26]

(A®?)=2Dy? j [R%(1,)+2(& -1DF - R, )+ £2]d, (3.4.19)
0
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with £=+1 for <7 and &=-1 for ¢t > 7, where R(¢) is defined by

R(f) = j G(tdt' (3.4.20)

and f = R(z), where r is the time of application of the 180° pulse.

The above analysis ignores the inertia of the Brownian particles. If inertial
effects are included, the translational process, x(f), now possesses two
characteristic times. One time characterizes the slow diffusion associated with
the non-inertial motion, which we have already analyzed. The other time is the
correlation time 7, =m/¢ of the velocity ACF. It is of interest to show how
one can include these characteristic times in the phase diffusion. Therefore we
show how the calculation using the non-inertial Langevin equation may be
extended to a free particle of mass m. In the inertial motion of a Brownian
particle, the velocity ACF is given by Egq. (3.3.21) which we rewrite as

(x(t,)3(t, )) L gl (3.4.21)
Now for a step field gradient we again have

d() = —yGri(t) and d(r) = —yc;j t %(1, )b,

Hence we can now evaluate the mean-square value of the phase </_\(I)2 > (1) as

I

(a0?)=27G [ [ 42, (3(t,)5(t,)) dt,d

_VGT
33m

[6+7 82 (2t -3)— 6" (1+153)] (3.4.22)

which reduces to the Carr—Purcell-Torrey result, Eq. (3.4.18), for long times
tB >>1. For short times, ¢/ << 1, we have the purely kinematic result

v G kTt (2 497
(ACIf) v (3.4.23)

Agam A® is a linear transformation of a Gaussian random variable, so that by
the properties of characteristic functions

()=t (3.424)

Hence Eq. (3.4.22) yields the inertia corrected dephasing for a step gradient. In
general, an infinity of fast relaxation modes will be generated, as a result of the
double transcendental nature of Eq. (3.4.24), and one dominant mode, much
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slower, which is that associated with the slow diffusive motion. An obvious
generalization of the left hand side of Eq. (3.4.18), for arbitrary gradient shapes
defined by Eq. (3.4.20), is

[

(8@ =292 [ [ (i )(6,))RU R, )y (3.4.25)

Hence, in order to calculate the dephasing for a Gaussian process, all that is
required is knowledge of the velocity ACF and the precise form of the field
gradients. We remark that Eq. (3.4.25) was previously derived by Stepisnik and
Callaghan [27] in connection with measurement of flow by NMR spectroscopy
and long-time tails of the molecular velocity correlation function in a confined
fluid. In Chapter 12, Section 12.8, the above calculations are extended to a more
general model, namely the fractional Brownian motion of a free particle coupled
to a fractal heat bath, using a fractional generalization of the Langevin equation.

3.5. Brownian motion of a harmonic oscillator

The equation of motion of a Brownian harmonic oscillator driven by a white
noise force F(t) 1s[3, 5]

mx(t) + & x(6) + mat x(1) = F(1). (3.5.1)
We now demonstrate how the correlation matrix, which contains two auto- and
two cross-correlation functions, namely,

x(Dx(t+t x(OHx(t+7
<.()( )) <.()_( N (.52
(x(Ox(t+7)) (XD +71))

may also be calculated from the Wiener—Khinchin theorem. We first calculate

the position ACF (x(t)x(t+ T)). To this end, we rewrite the Langevin cquation,
Eq. (3.5.1), as

. : F(t .

¥+ () + @l x(1) = Q (3.5.3)
We have, as in Section 3.3,

. F(w

Ho) =g

m(ew, +iwf —-w”)
and the spectral density @ (@) of the displacement is
D (@
O ()= r (@) (3.5.4)

m* [(woz —w*)* +a)2ﬂ2:li
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Since the spectral density of the noise is ®,(w)=2pmkT, we have by the
Wiener—Khinchin theorem

_ BkT % e dw
(x(O)x(t +7)) = | P

(3.5.5)
mm

—o0

The imaginary part of this integral vanishes, because it gives rise to an odd
function in the integrand. For @} > % /4 and 7 >0, we have [3]

1% cos wTd @ e i (

g . .
, = COS @, T +—sin T |, 3.5.6
i (wp -’ +a’fF pa} : ‘ (3:5.6)

2w,

where the damped natural frequency ay is defined as

2
W} =a) —'BT.
Hence the position ACF is given by
oy
(x(t)x(t + r)) =—70 e’ (cos T +_@_ sin colr]. (3.5.7)
ma, 2(‘:0l

We may now use this result to calculate the remaining elements of the
correlation matrix by differentiation. We have

(x(t))'c(z + T)) = <x(t) % x(t+ T)> = _j_r (x(t)x(t + T)> , (3.5.8)
so that with Eq. (3.5.7)
<x(t)5c(t + r)) =— %e‘ﬁ "2 sin @, 7. (3.5.9)

In order to evaluate the two remaining correlation functions, we note that, by
stationarity shifting the time axis from #to ¢ — T,

d d kT .
x(t+7)—x() ) =——(x(Ox(t + 1)) = —— P sinw, 7. 3.5.10
< (t+7)—x( )) - (x(®)x(z+71)) — \ (3.5.10)
The velocity ACF may likewise be evaluated. We have, by stationarity,

2

o d . d
(2Ot +7)) = — (x(x(t+1))=— e (x(Ox(t+7)), (3.5.11)

whence

(x(i(t+7)) = KT g2 [cos o1 - ZA sin @, TJ. (3.5.12)
m ‘

1
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The correlation matrix of the harmonic oscillator is thus

, |
— cosw,r-l-isma)ﬂ ——smT
kT _pera ) @ @,
—e (3.5.13)
m 1 . B .
—smaT CO8 7 ———SIN @T
a)l 2cui

Clearly, the under-damped process has significant memory of previous positions
(cf. Fig. 1.3.1.1). Thus, x(¢#) is regarded as [3] the projection of the two-
dimensional Markov process {x(), x(t)}.

3.6. Rotational Brownian motion of a fixed-axis rotator

In his first model of the phenomenon of diclectric relaxation, given mn 1913,
Debye [12] considered a system of molecules each carrying a permanent dipole
n, with every molecule free to rotate about a fixed axis (see Chapter 2, Section
2.6). Supposing that an external spatially uniform small d.c. electric field E
(= uE | (kT) <<1) had been applied to the system at /=-oo, and at time /=0 the
field has been switched off, the equation of motion of the fixed-axis rotator is

cO()+ nEsin 0() = A1), 1 <0, and ¢ =A(t), >0, (3.6.1)

where 0(¢) is the angle between the dipole p and the direction the field E, and
A(t) is a white-noise driving torque. One can then show that the PDF f(@,1) of
the dipole moment orientations satisfies the Smoluchowski equation

of o' f

Ty —

o 00*

where 7, =¢/(kT) is the Debye relaxation time for rotation about a fixed axis.
Equation (3.6.2) together with the initial condition

£(6,0) = ﬁ[m +‘:—fc059+m] (3.6.3)

t>0, (3.6.2)

then yields in the linear response approximation the well-known result [12] for
the mean dipole moment
2

:u E —tlT,
cos@)y=—=e"""". 3.6.4
p{cos0) = (3.6.4)
Inertial effects are included by simply restoring the inertial term 78 in Eg.
(3.6.1) above. Thus, that equation becomes

16(1) + cO(t) + uE sin 6(1) = A(f) (3.6.5)
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for <0, and
I6(t) + cO(1) = A(¢) (3.6.6)

for >0. Equation (3.6.6) is a Langevin equation of the same form as that
governing translational Brownian motion; see Eq. (3.2.3). Consequently, all the
results we have previously obtained for the translational case can be applied to
rotational Brownian motion. In particular, the mean-square angular displacement
((AG)*) is given by

2kT

((A0)") = 7

(/Bz—ne-ﬂ'), (3.6.7)

where B =¢ /I is the rotational damping coefficient. We note that, just as in all
the other models treated in this Chapter, Eq. (3.6.6) comprises a linear stochastic
differential equation with constant coefficients. This is of central importance to
what follows, where a theorem about characteristic functions of Gaussian
random variables [28] is used to calculate the dipole moment ACF.

Theorem about Gaussian random variables
The theorem i1s that, if X is a random variable with a Gaussian distribution,
then [28]

<eiX > _ ei(X)—(<X2>—<X>Z)/2 (3.6.8)
(cf. Eq. (3.4.24); see also Chapter 1, Section 1.6.3). Consider now the ACF

(cos G(t, ) cos B(t,)) ={cos 8(t, ) cos[6(t,) + AB]), where AO=0(t,)—0(t,). This
becomes, on expanding the terms within the angular brackets,
1
(cos O(t, ) cos 6(t, )) = 3 {{cos A8) +(cos[AG+26(, )}
_ 1 ‘ ing i80+26(1) ‘
—EReRe )+ (e )] (3.6.9)

where Re denotes “real part of.” Now, if @(f)) and &(z,) are Gaussian random
variables, any linear combination of them (e.g., A#) is also a Gaussian random
variable. Hence

<COS (1, )\ cos 8(t, )) — -;—Re (ef(w)—%[((ﬂm’)—(w)z]

i{a0+26(1 ))—%[([Amza(,l )]1)_<[Ao+za(;l )])2 ] J

te (3.6.10)
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Now, if the process we are considering is stationary, only those terms in Eq.
(3.6.10) which are functions of the #ime difference |t,~1t, | will survive, so that
Eqg. (3.6.10) will take on the simple form

(cos8(1,)cos8(1,))=(1/ oo L) g {361

Further, if @ is a centered Gaussian random variable (i.e., (#)=0), then Eq.
(3.6.11) reduces to

{cos 8 (1, ) cos A(2, )> =(1/ Z)e'_((M)h)/2 . (3.6.12)
Thus knowledge of ((A&))* is now sufficient to allow us to calculate averages.
We have given the theorem for » = 1. For any integer value of n it is simply

n? ((A()f)/:

(cos nd(t,)cos né (t2)> =(1/2)e (3.6.13)

We reiterate that this equation is true only for centered Gaussian random
variables. Thus the theorem will only hold good for those systems where &
satisfies a linear differential equation of motion.

Application to dielectric relaxation
We may have, from Eq. (3.6.7) and (3.6.12), the ACF C(¢):

C(#) = (cos 6(0) cos 0(1) /{cos? 0(0)) = B T

The complex polarizability o is written down using the linear response formula,
Chapter 2, Eq. (2.8.10). It 1s (with iw=s5)

Q’,’(S) —1_ T —st A ‘
a,m)_n s]: e C(1)dt. (3.6.15)
Hence [7] 7
a(s)zl_ 5|y Y + i +}
a'(0) s+yB| s/ B)+y+l [(s/B)+y+1(s/B)+y+2]
STh | _
=1—1+STDM[1,1+y(1+srb),y], (3.6.16)

where y =kT/(1B%) is Sack’s inertial parameter [57], 7, =1/(By), and
M(a, b, z) is the confluent hypergeometric (Kummer) function defined [29] as

‘ 2 1 , 3
a_. a(a+1)_z_+a(a+1)(a+2)z_

M(a,b,z)=1+— ,
b b(b+1) 21 b(B+1)(b+2) 3!

(3.6.17)
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This result shows that the effect of including the inertia of the dipole is to
produce a denumerable set of relaxation mechanisms. The series in Eq. (3.6.16)
may be rewritten as the continued fraction [7, 8]

as) _y s/h , . (3.6.18)

a'(0) s/ B+ Y >
I+s/ B+ 4

2+s/,6+—--—3y~
3+5/p+

The first convergent of Eq. (3.6.18) yields the Debye relaxation formula
a(s) _ 1
a'(0) 1+s7,

(3.6.19)

The second convergent of Eq. (3.6.18) yields the Rocard equation [30]

as) B L . (3.6.20)

a'(0) (s+yP)s+pB) l+st,+5c, /B
This provides [7] a good approximation to the relaxation behavior, provided that
7<0.05. Equations (3.6.16) and (3.6.20) have been exhaustively discussed in
Chapter 2 of Molecular Dynamics [10]. 1t is evident that the simple Debye
model, including an inertial correction, is not sufficient to explain the
experimental evidence. The inertial correction embodied in Eq. (3.6.20) does,
however, remove the unacceptable plateau in the high-frequency absorption
profile (see Section 1.15.1). The same holds true for all the three-dimensional
versions of the Debye model, including inertial effects. These are the sphere,
prolate and oblate spheroid, and general ellipsoid. The far-infrared absorption
and the microwave absorption linked to it cannot be satisfactorily explained by
the Debye theory with inertial corrections only.

As a prelude to the itinerant oscillator model of Chapter 11, which is an

attempt to address the Poley absorption theoretically, we now treat the torsional
oscillator model, originally discussed by Calderwood et al. [9].

3.7. Torsional oscillator model: example of the use of the Wiener integral

The simplest model that takes any account of the effect of the neighbors of a
molecule on its relaxation behavior is where we regard the molecule as a
torsional oscillator. Thus, we suppose that at a time # after the switching off of a
field which had been steady up to #= 0, the equation of motion of the dipole is

8(t) + pO(t) + ol 6(t) = W (1), (3.7.1)
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where W({) is the Wiener process (the symbol W being used for ease of
comparison with the original literature), @} =x/I, f=¢/I, and I is the
moment of inertia. We use the Wiener process here in order to illustrate how this
process, and the Wiener integral, may be used in the computation of averages.
We have

(W) =0, (W)W (t,))=c" min(y,1,), WE,)-W()=E -1).

If A and A’ denote the time differences ¢, —¢, and ¢/ —z;, respectively, then (see
Chapter 1, Section 1.8.1) {£(A))=0, (£(A)E(A"))=c” |AnA'|. The restoring
torque x 6(f) is used to crudely represent the effect of interaction due to the
neighbors of the molecule. In reality, this restoring torque is not at all linear,
because the torque on a dipole p placed in a field E is T=pxE, so that
’TI =|p| ﬂ‘E| sin 8. Hence, Eq. (3.7.1) should only hold for small & The case of
unrestricted 8 is considered in detail in Chapter 10. We now proceed as in the
free-particle problem, and write Eq. (3.7.1) in matrix form

X(t) = AX()+BU(1),

X {@(x)} _[o 1 ] _m o ,
O=."|, A=| |, , B=| |, U=W. (3172
o) oy P 1

The solution of Eq. (3.7.2) may be calculated just as for the free particle. We
have

0@)| {ee®+ps,(0)/ 5] —2¢,()s, )/ B, [ ]
L"(t)} ) { —&5e, (s, (1)1 2B) & ®O[c()-Bs,(O)/ ]Mé’o]
Jﬂef Ofe.)+ps. )/ ] 26,5, (1) 5 }
ol —@e s, 0/2F) e O[c.(O-Ps. (/]
where we have abbreviated
e (t)=e P s ()=sinh[B(t-7)/2], ¢ (t)=cosh[B (t-7)/2],

0
H;(dr), (3.7.3)

so that £=0 on the first line in Eq. (3.7.3). We use the stationary solution of Eq.
(3.7.3), rather than averaging over the initial conditions again, as an example of
an alternative method of calculation of the desired averages. The stationary
solution is found by simply extending the lower limit of integration to —oo and
setting the complementary part of the solution equal to zero in Eq. (3.7.3). The
matrix elements which are useful to us are fand 6. We have

a(r) = ﬁ% j e/ sinh [ B, (t~ 1)/ 2] £(dT)



248 The Langevin Equation

and thus

o(t) = j g U2 (cosh[,b’l (t—7)/2]-(B/ B )sinh[B, (t-—r)/Z]‘) E(dr),

—0

where f7 = ° —4@?. The formulas appropriate for the periodic (8 is

imaginary) and the critically damped (S, =0) cases can be written down by

replacing S sinh(f¢/2) and cosh(B¢/2), respectively, by (2a,)” sin

and cos w;t, in the periodic case, and by 1 and ¢/ 2 in the critically damped case.
We now define a function

o ()= {(2/,6’1)6“"”’2 sinh[ 4 (t-7)/2]. <1,

0, T>1.

Thus by the properties of the Wiener integral,

<9(z‘1)9(1‘2 )) =c’ I g, (0)g, (v)dr

2 min{i,5) B - ‘ _E —r
= 4? J' e? )sinh{’i‘ (4 —T)Je > smh[ﬁ1 (1, Hr)}dr

2w, ) B 5

Similarly, one may deduce that

<6" (tl )6?f (2, )> Y (cosh I:ﬂl / 2] ——smh I:ﬁ] |t |/ 2]) g Pl

and that (9(’1 )> = gﬁ (1, )) =0. Thus, for equal times, ¢, =1, =¢ say, we have
(6°(®)=c” 1(2Bat) and G (6))=c*/(2f). If we assume the Maxwellian
distribution for the angular velocity &(¢), we must have J (92 (t))/ 2=kT/2
and thus ¢ /(28) = kT /I. From this, with ¢, =0, t,= ¢, we have

sz {cosh( pitl2)+ % sinh( St/ 2):' o P

0 1

(8(0)6()) =

and (6°(0)) =(6" (1)) = kT / (J@?). Substituting from all these equations into
Eq. (3.6.10), we find that [9]

(cos 8(0) cos 6(1)) = 7 cosh {ye™" [cosh(t/ 2)+(B/ B)sinh(B¢/2)]},

where, in this instance, y = kT /(I&). Note that Eq. (3.6.10) must be used

rather than Eq. (3.6.13), because the second term on the right of Eq. (3.6.10)
does not now vanish, as a result of the influence of the restoring torque.
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Likewise, one may show that {cos 8(0))* = e and thus the after-effect function
b(r) =[g* / (kT)][{cos O(0) cos B(¢)) — {cos H(0))*] is

2

b(t) = % ¢ {cosh (ye ™ [cosh(Bt/2)+ (A1 B)sinh(Bt 1 2)]) - 1} (3.74)

It is instructive to make some comments on this equation. First we consider the
limiting value of b(¢) when w, is allowed to tend to zero. We find, by
1>Hépital’s rule, that
2 -~
u —1—(/1‘1 ~l4e ) 7 |
lim b(t) =—e 'F , 3.7.5
wy—0 () kT ( )
in agreement with the result for the free rotator. Returning now to Eq. (3.7.4),
we consider the behavior of b(¢) for large and small values of time 7. For very
short times (1 << 871), we find that

by ="

[cosh y(1- it )-1]. (3.7.6)

Thus, for short times, b(f) 1s independenz‘ of the friction coefficient . On the
other hand, as ¢ tends to infinity, we find that lim,__ b(z)=0, a condition
which b(¢) must, by definition, satisfy. We remark [1] that in the over-damped
case, the displacement is again effectively a Markov process.
We have, by expanding Eq. (3.7.4) as a Taylor series in powers of y, the
following expression for the after-effect function b(z) :
72n ~nft

b(t) = Te"Z ) [cosh(ﬁg/Z)-%—(ﬂ/ﬁ,)mnh(ﬁ,l/l)]z" (3.7.7)

which, on introduction of the angle ¢, where

sinh ¢ = A and cosh ¢ = s ,
2w, 2w,

may be written as

b(t)_ eri ol

From the binomial theorem, we have

e"]’ S 7/2" & 2"; m 2” 2(n-m¢ [m[)’,+nﬂ /}
b(t) = kT ;{(2;1)![,81] {;} b ( J }} (3.78)

e (2, 1 B,)" sinh™ (B 12+ ).
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We now recall that the complex polarizability a () is defined by Eq. (2.8.9)
of Chapter 2. From this, with Eq. (3.7.8), we have '

-y o 2n 2n 2n 271 2(n-m)¢
a(@)=p =L LS [ TE ] g
kT 5= o) B, — m J1+ior,
Here 7z, =mpf +n(f-4). The factor in square brackets in Eq. (3.7.9)
represents the partial-fraction expansion of the Fourier transform of

e sinh*" (,611/2-5-415).

One may calculate successive terms in Eq. (3.7.9) by expanding the expression
in square brackets in that equation for n=1, 2,3, .... Thus for n=1, the value of
this expression is

2672 ]

2h( ﬂf"f) . (3.7.10)

(B+io)(f+iw)’ - ]
while for n =2 we must add the term
WA { 2B+iw) +3BQ2+in) + 256t + F)2B +iw) +12a7 ,6’}
@, 2 +ia) (2B +iw)' - B2 N(2B +iw)* —45°]

Clearly, the polarizability in the under-damped case @} > % /4 consists of a
discrete set of resonant absorptions [31]. This is of importance in connection
with the itinerant oscillator model, which has been extensively used to discuss
the far-infrared (Poley) absorption [10, 31]; we describe this in Chapter 11 (see
also Chapter 10, Section 10.4.3).
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